1,533 research outputs found

    Heads I Win, Tails You Lose: A Study Of Antitrust Jurisprudence In The Federal Circuit

    Get PDF

    Heads I Win, Tails You Lose: A Study Of Antitrust Jurisprudence In The Federal Circuit

    Get PDF

    QCD equation of state at non-zero chemical potential

    Full text link
    We present our new results for the QCD equation of state at nonzero chemical potential at N_t=6 and compare them with N_t=4. We use the Taylor expansion method with terms up to sixth order in simulations with 2+1 flavors of improved asqtad quarks along a line of constant physics with m_l=0.1 m_s and approximately physical strange quark mass m_s.Comment: 7 pages, 10 figures, presented at Lattice 2008 (Nonzero Temperature and Density), College of William and Mary, Williamsburg, V

    Electromagnetic contributions to pseudoscalar masses

    Get PDF
    We report on the calculation by the MILC Collaboration of the electromagnetic effects on kaon and pion masses. These masses are computed in QCD with dynamical (asqtad staggered) quarks plus quenched photons at three lattice spacings varying from 0.12 to 0.06 fm. The masses are fit to staggered chiral perturbation theory with NLO electromagnetic terms, as well as analytic terms at higher order. We extrapolate the results to physical light-quark masses and to the continuum limit. At the current stage of the analysis, most, but not all, of the systematic errors have been estimated. The main goal is the comparison of kaon electromagnetic splittings to those of the pion, i.e., an evaluation of the corrections to “Dashen’s theorem.” This in turn will allow us to significantly reduce the systematic errors in our determination of m<sub>u</sub>/m<sub>d</sub>

    Lattice QCD ensembles with four flavors of highly improved staggered quarks

    Full text link
    We present results from our simulations of quantum chromodynamics (QCD) with four flavors of quarks: u, d, s, and c. These simulations are performed with a one-loop Symanzik improved gauge action, and the highly improved staggered quark (HISQ) action. We are generating gauge configurations with four values of the lattice spacing ranging from 0.06 fm to 0.15 fm, and three values of the light quark mass, including the value for which the Goldstone pion mass is equal to the physical pion mass. We discuss simulation algorithms, scale setting, taste symmetry breaking, and the autocorrelations of various quantities. We also present results for the topological susceptibility which demonstrate the improvement of the HISQ configurations relative to those generated earlier with the asqtad improved staggered action.Comment: 43 pages, 11 postscript figures, 15 tables, minor changes in text, version published in Phys. Rev.

    Leptonic decay-constant ratio f_{K^+}/f_{pi^+} from lattice QCD with physical light quarks

    Full text link
    A calculation of the ratio of leptonic decay constants f_{K^+}/f_{\pi^+} makes possible a precise determination of the ratio of CKM matrix elements |V_{us}|/|V_{ud}| in the Standard Model, and places a stringent constraint on the scale of new physics that would lead to deviations from unitarity in the first row of the CKM matrix. We compute f_{K^+}/f_{\pi^+} numerically in unquenched lattice QCD using gauge-field ensembles recently generated that include four flavors of dynamical quarks: up, down, strange, and charm. We analyze data at four lattice spacings a ~ 0.06, 0.09, 0.12, and 0.15 fm with simulated pion masses down to the physical value 135 MeV. We obtain f_{K^+}/f_{\pi^+} = 1.1947(26)(37), where the errors are statistical and total systematic, respectively. This is our first physics result from our N_f = 2+1+1 ensembles, and the first calculation of f_{K^+}/f_{\pi^+} from lattice-QCD simulations at the physical point. Our result is the most precise lattice-QCD determination of f_{K^+}/f_{\pi^+}, with an error comparable to the current world average. When combined with experimental measurements of the leptonic branching fractions, it leads to a precise determination of |V_{us}|/|V_{ud}| = 0.2309(9)(4) where the errors are theoretical and experimental, respectively.Comment: 6 pages, 1 table, 2 figures; v3: result for f_{K^+}/f_{pi^+} updated to include additional data; typo in some values of L in Table 1 corrected; typo in sign of 1-|V_{ud}|^2-|V_{us}|^2-|V_{ub}|^2 corrected; version to be published in Phys. Rev. Let
    • …
    corecore