14 research outputs found

    A de novo marker chromosome derived from 9p in a patient with 9p partial duplication syndrome and autism features: genotype-phenotype correlation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies focusing on candidate genes and chromosomal regions identified several copy number variations (CNVs) associated with increased risk of autism or autism spectrum disorders (ASD).</p> <p>Case Presentation</p> <p>We describe a 17-year-old girl with autism, severe mental retardation, epilepsy, and partial 9p duplication syndrome features in whom GTG-banded chromosome analysis revealed a female karyotype with a marker chromosome in 69% of analyzed metaphases. Array CGH analysis showed that the marker chromosome originated from 9p24.3 to 9p13.1 with a gain of 38.9 Mb. This mosaic 9p duplication was detected only in the proband and not in the parents, her four unaffected siblings, or 258 ethnic controls. Apart from the marker chromosome, no other copy number variations (CNVs) were detected in the patient or her family. Detailed analysis of the duplicated region revealed: i) an area extending from 9p22.3 to 9p22.2 that was previously identified as a critical region for the 9p duplication syndrome; ii) a region extending from 9p22.1 to 9p13.1 that was previously reported to be duplicated in a normal individual; and iii) a potential ASD locus extending from 9p24.3 to 9p23. The ASD candidate locus contained 34 genes that may contribute to the autistic features in this patient.</p> <p>Conclusion</p> <p>We identified a potential ASD locus (9p24.3 to 9p23) that may encompass gene(s) contributing to autism or ASD.</p

    High-resolution analysis of DNA copy number alterations in patients with primary open-angle glaucoma

    Get PDF
    PURPOSE: To determine whether patients with isolated primary open-angle glaucoma (POAG) have evidence of chromosomal copy number alterations. METHODS: Twenty-seven Caucasian and African-American POAG patients and 12 ethnically matched controls were carefully screened for possible glaucoma and tested for chromosomal copy number alterations using high resolution array comparative genomic hybridization. RESULTS: No POAG patient had evidence of chromosomal copy number alterations when compared to normal ethnically matched controls. Additionally, there was no evidence of somatic mosaicism in any tested POAG patient. CONCLUSIONS: Chromosomal deletions and/or duplications were not detected in POAG patients as compared to controls. Other chromosomal imbalances such as translocations, inversions, and some ploidies cannot be detected by current array comparative genomic hybridization technology, and other nuclear genetic, mitochondrial abnormalities, or epigenetic factors cannot be excluded as a possible contributing factor to POAG pathogenesis

    Down-regulation of OPA1 in patients with primary open angle glaucoma

    Get PDF
    PURPOSE: Heterozygous optic atrophy type1 (OPA1) mutations are responsible for dominant optic atrophy, and the down regulation of OPA1 expression in patients with Leber hereditary optic neuropathy may imply that Opa1 protein levels in mitochondria play a role in other spontaneous optic neuropathies as well. Mitochondrial and metabolic abnormalities may put the optic nerve at risk in primary open angle glaucoma (POAG), and this preliminary study was designed to investigate whether altered OPA1 expression might be present in the progressive optic neuropathy of POAG. METHODS: Patients were eligible for inclusion if they met standard clinical criteria for POAG, including age greater than 40 years, intraocular pressure ≥ 21 mmHg in at least one eye before treatment, normal-appearing anterior chamber angles bilaterally on gonioscopy, and optic nerve injury characteristic of POAG. RNA was extracted from leukocytes and converted to cDNA by reverse transcriptase enzyme, and real time PCR was used to assess expression levels of OPA1 and the β-globulin (HBB) housekeeping gene. The ratio of OPA1 expression to HBB expression (OPA1/HBB) for POAG patients was compared to that of controls and to clinical characteristics of POAG patients. RESULTS: Forty-three POAG patients and 27 controls were completely phenotyped with a full ophthalmologic examination and static perimetry. Mean age (POAG 67.9 years; controls 61.8 years) and sex (POAG 26 males/17 females; controls 11/16) were similar for the two groups. Mean OPA1/HBB of POAG patients (1.16, SD 0.26) was 18% lower than controls (1.41, SD 0.50), and this difference was statistically significant (p≤0.021). OPA1 expression differed between the groups (p≤0.037), but HBB expression did not differ (p≤0.24). OPA1/HBB was not correlated with any clinical feature of POAG patients. CONCLUSIONS: Transcriptional analysis of peripheral blood leucocytes is a limited model system for studying the consequences of mitochondrial abnormalities in the optic nerve. Nevertheless, OPA1 is known to affect mitochondrial stability and has now been implicated in several spontaneous optic neuropathies. Decreased OPA1 expression in POAG patients is another indication that mitochondrial function, and possibly mitochondrially-induced apoptosis, may play a role in the development of POAG

    A patient with typical clinical features of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) but without an obvious genetic cause: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>There are currently 23 missense point mutations and one 4 basepair deletion spanning different mitochondrial genes associated with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS). The spectrum of mitochondrial DNA mutations in Arab patients with MELAS is largely unknown.</p> <p>Case presentation</p> <p>A standard clinical examination was carried out on a 34-year-old Saudi woman showing clinical features of MELAS. Fresh frozen muscle tissue was subjected to enzyme histochemical analysis. DNA was extracted from her leukocytes and muscle tissue, and the full mitochondrial genome was screened for base substitution mutations and deletions. Additionally, we screened the polymerase gamma-1 nuclear gene for mutations. The patient was negative for the most common m.3243 A>G MELAS mutation. Sequencing the full mitochondrial genome did not reveal any known or potentially pathogenic sequence changes. The polymerase gamma-1 gene was also free from mutations.</p> <p>Conclusion</p> <p>The clinical picture described here typically fits that observed in patients with MELAS or mitochondrial stroke-like events, but mutations in recognized genes (mitochondrial DNA and polymerase gamma-1 gene) were absent. We report the case of a patient with typical clinical features of MELAS, but without an obvious genetic cause.</p

    Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia

    Get PDF
    About 30–40% of male infertility is due to unknown reasons. Genetic contributions to the disruption of spermatogenesis are suggested and amongst the genetic factors studied, Y chromosome microdeletions represent the most common one. Screening for microdeletions in AZFa, b and c region of Y chromosome showed a big variation among different studies. The purpose of this study was to investigate the prevalence of such deletions in Saudi men. A total of 257 patients with idiopathic oligo- or azoospermia were screened for Y chromosome microdeletions by 19 markers in AZF region. Ten (3.9%) patients had chromosomal rearrangements, six of them showed sex chromosome abnormalities and four patients had apparently balanced autosomal rearrengements. Eight of the remaining 247 patients (3.2%) with a normal karyotype and no known causes of impaired spermatogenesis had Y chromosome microdeletions. Among these, six patients had deletions in AZFc region, one case had a deletion in AZFb and another had both AZFa and AZFc deletions. In conclusion, our study shows that Y chromosome microdeletions are low in our population. We also report for the first time a case with unique point deletions of AZFa and AZFc regions. The lower frequency of deletions in our study suggest that other genetic, epigenetic, nutritional and local factors may be responsible for idiopathic oligo- or azoospermia in the Saudi population

    Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human origins and migration models proposing the Horn of Africa as a prehistoric exit route to Asia have stimulated molecular genetic studies in the region using uniparental loci. However, from a Y-chromosome perspective, Saudi Arabia, the largest country of the region, has not yet been surveyed. To address this gap, a sample of 157 Saudi males was analyzed at high resolution using 67 Y-chromosome binary markers. In addition, haplotypic diversity for its most prominent J1-M267 lineage was estimated using a set of 17 Y-specific STR loci.</p> <p>Results</p> <p>Saudi Arabia differentiates from other Arabian Peninsula countries by a higher presence of J2-M172 lineages. It is significantly different from Yemen mainly due to a comparative reduction of sub-Saharan Africa E1-M123 and Levantine J1-M267 male lineages. Around 14% of the Saudi Arabia Y-chromosome pool is typical of African biogeographic ancestry, 17% arrived to the area from the East across Iran, while the remainder 69% could be considered of direct or indirect Levantine ascription. Interestingly, basal E-M96* (n = 2) and J-M304* (n = 3) lineages have been detected, for the first time, in the Arabian Peninsula. Coalescence time for the most prominent J1-M267 haplogroup in Saudi Arabia (11.6 ± 1.9 ky) is similar to that obtained previously for Yemen (11.3 ± 2) but significantly older that those estimated for Qatar (7.3 ± 1.8) and UAE (6.8 ± 1.5).</p> <p>Conclusion</p> <p>The Y-chromosome genetic structure of the Arabian Peninsula seems to be mainly modulated by geography. The data confirm that this area has mainly been a recipient of gene flow from its African and Asian surrounding areas, probably mainly since the last Glacial maximum onwards. Although rare deep rooting lineages for Y-chromosome haplogroups E and J have been detected, the presence of more basal clades supportive of the southern exit route of modern humans to Eurasian, were not found.</p

    Horizontal gaze palsy and progressive scoliosis without ROBO3 mutations

    No full text
    BACKGROUND: To describe clinical and genetic observations in a patient with horizontal gaze palsy and progressive scoliosis (HGPPS) without identified mutations in the ROBO3 gene. MATERIALS AND METHODS: Neurologic and orthopedic evaluation of the proband; sequencing all exons, exon-intron boundaries, and promoter region of ROBO3 in the proband and his mother. Array CGH was also carried out in the proband and his mother to evaluate possible chromosomal deletion(s) and/or duplication(s). RESULTS: The proband had complete horizontal gaze restriction with full vertical gaze and small amplitude horizontal pendular nystagmus. He also had severe scoliosis and brainstem hypoplasia pathognomonic of HGPPS. However, complete sequencing of ROBO3 twice in both forward and reverse directions did not reveal any mutations. Array CGH investigation revealed no chromosomal abnormalities. CONCLUSIONS: This patient had clinical and neuroimaging characteristics considered pathognomonic of HGPPS and yet did not have ROBO3 mutations. A clinical misdiagnosis is unlikely in the absence of facial weakness (typical of Moebius syndrome), deafness (typical of the HOXA1 spectrum), or mental retardation (typical of other central decussation abnormalities). It is perhaps more likely that a phenotype identical to HGPPS can be caused by abnormalities in ROBO3 splice variant expression, by mutations of a gene other than ROBO3, or by some environmental or epigenetic factor(s) inhibiting the action of ROBO3 or its protein product in the developing brainstem
    corecore