13 research outputs found

    The sole DNA ligase in entamoeba histolytica is a high-fidelity DNA ligase involved in DNA damage repair

    Get PDF
    "The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolyticaencodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H2O2 treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H2O2 treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.

    Telomeric Repeat-Binding Factor Homologs in Entamoeba histolytica: New Clues for Telomeric Research

    Get PDF
    Telomeric Repeat Binding Factors (TRFs) are architectural nuclear proteins with critical roles in telomere-length regulation, chromosome end protection and, fusion prevention, DNA damage detection, and senescence regulation. Entamoeba histolytica, the parasite responsible of human amoebiasis, harbors three homologs of human TRFs, based on sequence similarities to their Myb DNA binding domain. These proteins were dubbed EhTRF-like I, II and III. In this work, we revealed that EhTRF-like I and II share similarity with human TRF1, while EhTRF-like III shares similarity with human TRF2 by in silico approach. The analysis of ehtrf-like genes showed they are expressed differentially under basal culture conditions. We also studied the cellular localization of EhTRF-like I and III proteins using subcellular fractionation and western blot assays. EhTRF-like I and III proteins were enriched in the nuclear fraction, but they were also present in the cytoplasm. Indirect immunofluorescence showed that these proteins were located at the nuclear periphery co-localizing with Lamin B1 and trimethylated H4K20, which is a characteristic mark of heterochromatic regions and telomeres. We found by transmission electron microscopy that EhTRF-like III was located in regions of more condensed chromatin. Finally, EMSA assays showed that EhTRF-like III forms specific DNA-protein complexes with telomeric related sequences. Our data suggested that EhTRF-like proteins play a role in the maintenance of the chromosome ends in this parasite

    Association of the PSRC1 rs599839 Variant with Coronary Artery Disease in a Mexican Population

    No full text
    Background and Objectives: Coronary artery disease (CAD) is a major health problem in México. The identification of modifiable risk factors and genetic biomarkers is crucial for an integrative and personalized CAD risk evaluation. In this work, we aimed to validate in a Mexican population a set of eight selected polymorphisms previously associated with CAD, myocardial infarction (MI), or dyslipidemia. Materials and Methods: A sample of 907 subjects (394 CAD cases and 513 controls) 40–80 years old was genotyped for eight loci: PSRC1 (rs599839), MRAS (rs9818870), BTN2A1 (rs6929846), MTHFD1L (rs6922269), CDKN2B (rs1333049), KIAA1462 (rs3739998), CXCL12 (rs501120), and HNF1A (rs2259816). The association between single nucleotide polymorphisms (SNPs) and CAD was evaluated by logistic regression models. Results: Multiple logistic regression analysis with adjustment by age, gender, and body mass index showed that rs599839 was significantly associated with CAD (ORADD = 0.72, p = 0.009; ORDOM = 0.66, p = 0.007). Conclusions: The PSRC1 rs599839 polymorphism shows a significant protective association with CAD in this sample of the Mexican population

    Operational oil spill trajectory modelling using HF radar currents:A northwest European continental shelf case study

    No full text
    This paper presents a novel operational oil spill modelling system based on HF radar currents, implemented in a northwest European shelf sea. The system integrates Open Modal Analysis (OMA), Short Term Prediction algorithms (STPS) and an oil spill model to simulate oil spill trajectories. A set of 18 buoys was used to assess the accuracy of the system for trajectory forecast and to evaluate the benefits of HF radar data compared to the use of currents from a hydrodynamic model (HDM). The results showed that simulated trajectories using OMA currents were more accurate than those obtained using a HDM. After 48 h the mean error was reduced by 40%. The forecast skill of the STPS method was valid up to 6 h ahead. The analysis performed shows the benefits of HF radar data for operational oil spill modelling, which could be easily implemented in other regions with HF radar coverage.</p

    Genome-Wide Association Study of Body Mass Index and Body Fat in Mexican-Mestizo Children

    No full text
    Background: Childhood obesity is a major health problem in Mexico. Obesity prevalence estimated by body mass index (BMI) is almost half than that estimated by percent body fat (%BF) in the Childhood Obesity pediatric cohort (COIPIS). Objective. We performed a genome-wide association study (GWAS) of BMI and %BF in 828 children from the COIPIS to identify markers of predisposition to high values for both phenotypes used for obesity classification. Methods: For the GWAS we used the LAT Axiom 1, Affymetrix and 2.5 million single loci from the 1000 Genomes Phase 3 imputation panel. We used a linear model, adjusted by age, sex, and Amerindian ancestry assuming an additive inheritance model. Results. Genome-wide significance (p &le; 5.0 &times; 10&minus;8) and 80% of statistical power was reached for associations of two loci in two genes (CERS3 and CYP2E1) to BMI. Also, 11 loci in six genes (ANKS1B, ARNTL2, KCNS3, LMNB1, SRGAP3, TRPC7) reached genome-wide significance for associations to %BF, though not 80% of statistical power. Discussion: None of the SNPs were previously reported as being associated to BMI or %BF. In addition, different loci were found for BMI and %BF. These results highlight the importance of gaining deeper understanding of genetic markers of predisposition to high values for the phenotypes used for obesity diagnosis

    Common Polymorphisms Linked to Obesity and Cardiovascular Disease in Europeans and Asians are Associated with Type 2 Diabetes in Mexican Mestizos

    No full text
    Background and objectives: Type 2 diabetes (T2D) is a major problem of public health in Mexico. We investigated the influence of five polymorphisms, previously associated with obesity and cardiovascular disease in Europeans and Asians, on T2D in Mexican Mestizos. Materials and Methods: A total of 1358 subjects from 30 to 85 years old were genotyped for five loci: CXCL12 rs501120; CDNK2A/B rs1333049; HNF-1&#945; rs2259816; FTO rs9939609; and LEP rs7799039. We used logistic regressions to test the effect of each locus on T2D in two case&#8315;control groups with obesity and without obesity. Also, linear regression models on glucose and glycated hemoglobin (HbA1c) were carried out on the whole sample, adjusted by age, gender, and body mass index. Results: The CXCL12 rs501120 C allele (OR = 1.96, p = 0.02), the FTO rs9939609 A allele (OR = 2.20, p = 0.04) and the LEP rs7799039 A allele (OR = 0.6, p = 0.03) were significantly associated with T2D in obesity case&#8315;control group. No significant association was found in the non-obesity case&#8315;control group. The linear regression model showed that CDNK2A/B rs1333049 C allele (&#946; = 0.4, p = 0.03) and FTO rs9939609 A allele (&#946; = 0.5, p = 0.03), were significantly associated with HbA1c, but no association was found among the loci with the glucose levels. Conclusions: Polymorphisms previously linked with obesity and cardiovascular events were also associated with T2D and high levels of HbA1c. Furthermore, we must point at the fact that this is the first report where polymorphisms CXCL12 rs501120 and LEP rs7799039 are associated with T2D in subjects with obesity

    Image_3_The Sole DNA Ligase in Entamoeba histolytica Is a High-Fidelity DNA Ligase Involved in DNA Damage Repair.JPEG

    Get PDF
    <p>The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolytica encodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H<sub>2</sub>O<sub>2</sub> treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H<sub>2</sub>O<sub>2</sub> treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.</p

    Image_2_The Sole DNA Ligase in Entamoeba histolytica Is a High-Fidelity DNA Ligase Involved in DNA Damage Repair.JPEG

    No full text
    <p>The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolytica encodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H<sub>2</sub>O<sub>2</sub> treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H<sub>2</sub>O<sub>2</sub> treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.</p

    Image_1_The Sole DNA Ligase in Entamoeba histolytica Is a High-Fidelity DNA Ligase Involved in DNA Damage Repair.JPEG

    No full text
    <p>The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolytica encodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H<sub>2</sub>O<sub>2</sub> treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H<sub>2</sub>O<sub>2</sub> treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.</p

    Table_2_The Sole DNA Ligase in Entamoeba histolytica Is a High-Fidelity DNA Ligase Involved in DNA Damage Repair.DOCX

    No full text
    <p>The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolytica encodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H<sub>2</sub>O<sub>2</sub> treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H<sub>2</sub>O<sub>2</sub> treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.</p
    corecore