79 research outputs found

    Influence of shield tunnel construction on ground surface settlement under the condition of upper-soft and lower-hard composite strata

    Get PDF
    Taking the shield tunnel project of Guangzhou Metro Line 8 from Tongdewei Station to Shangbu Station as the research background, using the research method of finite element simulation and site monitoring, this paper analyses the influence rules of shield tunneling on ground subsidence under the condition of different hard rock height ratios. The research results show that in the process of crossing different hard rock height ratio composite stratum, as the hard rock height ratio decreases, the value of ground settlement decreases and settlement tank becomes shallow. The surface subsidence in different hard rock height ratio strata is obviously different, and the maximum difference is about 8.6 mm; The influence of the hard rock height ratio on the surface longitudinal settlement is mainly reflected in the position change of the beginning and the end of the settlement. With the increase of the hard rock height ratio, the shield construction reduces the amount of the surface longitudinal settlement and its influence range; Through the research, it is found that the hard rock height ratio in the 0-0.2 and 0.5-1 is the sensitive interval, and the settlement value in these two hard rock height ratio interval varies greatly. It is necessary to pay attention to the uneven settlement of the ground surface caused by shield construction in the sensitive hard rock height ratio interval. The research results of this paper can provide reference value for similar shield construction in upper soft and lower hard composite stratum

    Driver mutations of cancer epigenomes

    Get PDF

    Research on the Influence of Tunnel Invert Excavation on the Rheological Deformation of Different Levels of Surrounding Rock

    No full text
    The closed section of the inverted arch, formed by the surrounding rock, acts as a bearing ring. Combined with the upper initial support, it ensures stable initial support. However, excavating the inverted arch can disturb the original balance, significantly affecting the tunnel’s stability. To determine the optimal exposure length and excavation length of the elevation arches at different rock levels, numerical analyses were conducted. These analyses used the classical Burgers creep intrinsic structure model for the three-step excavation mode. Various closure distances and exposure distances of the elevation arch were considered. The study aimed to investigate the influence of these factors on the stability of the primary lining, comparing it with the maximum displacement of the vault. The results indicate that the strength of the surrounding rock primarily affects the displacement of the arch crown. Lower rock strength corresponds to greater arch crown displacement. Additionally, increasing the closure distance of the inverted arch leads to increased arch displacement. On the other hand, the exposure distance of the inverted arch has minimal impact on arch displacement. Longer exposure distances result in greater arch displacement. These findings can serve as a basis for improving current standards and adapting them to meet the spatial requirements of large-scale mechanized operations

    Hysteresis Behavior Modeling of Hard Rock Based on the Mechanism and Relevant Characteristics

    No full text
    The modeling of cyclic behavior in rock remains a challenge due to complex deformation characteristics. This paper studied the mechanical behaviors of granite samples under uniaxial cyclic loading and unloading through cyclic compression tests and acoustic emission (AE) monitoring. Then, a comprehensive body that consisted of an elastic element, plastic element, and friction element was proposed to describe the stress–strain relationship with respect to cyclic behavior, in which the friction element was connected in parallel with the serial combination of the elastic element and plastic element. Finally, the parameters of the proposed model were calibrated based on the mechanism analysis and backpropagation (BP) neural network. Results show that the behavior during unloading is primarily elastic and is accompanied by the obstruction of friction. During reloading, the behavior changes from elastic to elastic–plastic before and after the Kaiser point. The tangential modulus of the elastic element is dynamic in a linear positive correlation with elastic strain and a linear negative correlation with plastic strain; specifically, the elastic strain controls the variation process of the elastic modulus while the plastic strain determines the lower limit. The constitutive law of the plastic element is expressed by a logistic function, which means that the plastic strain increases in a trend of acceleration–deceleration. The friction element plays a major role in processing the massing effect, and the plastic element is prompted before the historical maximum stress, which reflects the ratcheting effect and Felicity effect. The reliability of the proposed constitutive model is confirmed by the comparison of the simulated stress–strain curves with the experimental curves

    Numerical Study on the Disturbance Effect of Short-Distance Parallel Shield Tunnelling Undercrossing Existing Tunnels

    No full text
    The construction of new tunnels poses a threat to the operational safety of closely existing tunnels, and the construction mode of parallel undercrossing over short distances has the most significant impact. In this study, a new double-line shield tunnel parallel undercrossing of existing tunnels in Hefei, China, is taken as an example. A three-dimensional (3D) numerical model using FLAC3D finite difference software was established. The dynamic construction of the new double-line shield tunnel undercrossing the existing subway tunnel over a short distance and in parallel was simulated. The pattern of existing tunnel settlement and change in lining stress caused by the shield tunnelling process were analyzed. The reliability of simulation was verified through field-monitoring data. Finally, based on the numerical model, the effects of change in stratum sensitivity on the settlement of existing tunnel, lining internal force, and surface settlement are discussed. The results show that during shield tunnelling, the maximum ground settlement is 3.9 mm, the maximum settlement at the arch waist of existing tunnel near the new tunnel is 7.75 mm, and the maximum vault settlement is 5.38 mm. The maximum stress of lining of existing tunnel before the excavation is 7.798 × 105 Pa. After the construction of double-line shield tunnel, the maximum stress of lining is 1.124 × 106 Pa, an increase of 44% than that before the construction. The surface settlement and tunnel settlement are sensitive to the weakening of soil layer strength, and lining stress is not affected by the weakening of soil layer strength. The field-monitoring results are consistent with the numerical simulation results, and the model calculation is reliable. This study plays an important role in ensuring construction safety and optimizing the construction risk control of a tunnel

    Analytical analyses of the effect of filled karst cavern on tunnel lining structure under complex geological conditions

    No full text
    In this study, based on the elastic foundation beam theory, a local elastic foundation model has been developed. Using the model, the mechanical characteristics of the effect of tunnel-filled karst on the lining structure has been investigated. Incorporating the characteristic of the karst area, the formulas for the displacement, bending moment, and shear force of an equivalent beam have been derived. By applying the formulas to a beam under different working conditions, such as different cavern sizes and different compression modulus ratios of the filling media, analyses of the mechanical states have been carried out. The results show that if the compression modulus ratio of different filling media is close to unity, the effect of the cave on the lining structure is very small. On the other hand, if the ratio is much less than unity, the effect is more significant. The effect on the stability of the lining structure is greater for the larger caves, and smaller for the smaller caves. For the tunnel bottom equivalent beam, its bending point is at the point where the cave is in contact with the surrounding rock. Further, the maximum shear force is at the contact surface. For a beam that is closer to the karst, the displacement is larger. Under this situation, the beam section is in an adverse force state and prone to cracks. The results from this study can be used as a significant guide for the design, maintenance and construction of a tunnel which has a cavern at the base of the tunnel

    An experimental study of the combusition and emission performances of 2,5-dimethylfuran diesel blends on a diesel engine

    No full text
    Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure

    Analysis of Asymmetrical Deformation of Surface and Oblique Pipeline Caused by Shield Tunneling along Curved Section

    No full text
    The deformation of existing pipelines caused by the tunneling of a shield machine along curved sections has not been sufficiently researched, and a corresponding theoretical prediction formula is lacking. This paper derives a prediction formula for the deformation of an existing pipeline caused by shield machine tunneling along a curved section. Further, a finite difference model (FDM) corresponding to an actual project is built. Finally, the deformation of the surface and existing pipelines caused by shield machine tunneling along the curved section is analyzed. The research results show that the results of theoretical prediction, FDM calculation, and field monitoring data are consistent. In addition, the deformation of the surface and the existing pipeline are asymmetrically distributed when the shield machine tunnels along the curve section instead of symmetrically distributed (for straight line segment). When the pipeline is perpendicular to the tunnel axis, the maximum deformation position of the existing pipeline deviates from the tunnel axis by about 0.5 times the tunnel radius. In addition, as the angle β between the pipeline axis and the tunnel axis increases, the maximum deformation position of the pipeline gradually approaches the tunnel axis

    Numerical Investigation of Longitudinal through Voids in Tunnel Secondary Lining Vaults and Steel Plate Strengthening

    No full text
    This study investigates the influence of longitudinal through voids on vault lining. Firstly, a loading test was carried out on a local void model, and the CDP model was used for numerical verification. It was found that the damage to the lining caused by a longitudinal through void was primarily located at the void boundary. On the basis of these findings, an overall model of the vault’s through void was established using the CDP model. The effects of the void on the circumferential stress, vertical deformation, axial force, and bending moment of the lining surface were analyzed, and the damage characteristics of the vault’s through void lining were studied. The results indicated that the through void of the vault caused circumferential tensile stress on the lining surface of the void boundary, while the compressive stress of the vault increased significantly, resulting in a relatively uplifted vault. Furthermore, the axial force within the void range decreased, and the local positive bending moment at the void boundary increased significantly. The impact of the void increased gradually with the height of the void. If the height of the longitudinal through void is large, the inner surface of the lining at the void boundary will crack longitudinally, and the vault will be at risk of falling blocks or even being crushed

    Numerical Investigation on the Mechanical Properties of Vault Void Lining and Steel Plate Strengthening

    No full text
    To study the mechanism of vault lining under different void heights and verify the strengthening effect of the attached steel plate, a CDP (concrete-damaged plasticity) model and the XFEM (extended finite element method) were used to construct the local numerical model of the vault void, and an experiment was carried out for verification. The strengthened structure of the steel plate was assembled with a combination of a two-component epoxy adhesive and chemical anchor bolts. Five lining models with various void thicknesses, together with their strengthened models, were evaluated. The results of the established numerical model were compared with the experimental results in terms of failure mode, vertical displacement, and load-deformation results. The results of the two numerical models were in good agreement with the experimental results, revealing the failure mechanism of the vault lining. The rigidity of the specimen after steel plate strengthening was significantly improved. When the void height was one-fourth of the secondary lining thickness, the lining cracks were reduced from 14 to 4, and the distribution width of the cracks was also reduced from 1.047 to 0.091 m after steel plate strengthening. The level of damage caused by cracking was significantly reduced, which proves the effectiveness of the surface-sticking method for steel plate strengthening
    • …
    corecore