50 research outputs found

    Metabolism in stem cell driven leukaemia: parallels between haematopoiesis and immunity

    Get PDF
    Our understanding of cancer metabolism spans from its role in cellular energetics and supplying the building blocks necessary for proliferation, to maintaining cellular redox and regulating the cellular epigenome and transcriptome. Cancer metabolism, once thought to be solely driven by upregulated glycolysis, is now known to comprise of multiple pathways with great plasticity in response to extrinsic challenges. Furthermore, cancer cells can modify their surrounding niche during disease initiation, maintenance and metastasis, contributing to therapy resistance. Leukaemia is a paradigm model of stem cell driven cancer. Here, we review how leukaemia remodels the niche and rewires its metabolism with particular attention paid to therapy-resistant stem cells. Specifically, we aim to give a global, non-exhaustive overview of key metabolic pathways. By contrasting the metabolic rewiring required by myeloid leukaemic stem cells with that required for haematopoiesis and immune cell function, we highlight the metabolic features they share. This is a critical consideration when contemplating anti-cancer metabolic inhibitor options, especially in the context of anti-cancer immune therapies. Finally, we examine pathways that have not been studied in leukaemia but are critical in solid cancers in the context of metastasis and interaction with new niches. These studies also offer detailed mechanisms that have yet to be investigated in leukaemia. Given that cancer (and normal) cells can meet their energy requirements by not only upregulating metabolic pathways, but also utilising systemically available substrates, we aim to inform how interlinked these metabolic pathways are, both within leukaemic cells and between cancer cells and their niche

    The Ins and Outs of Autophagy and Metabolism in Hematopoietic and Leukemic Stem Cells: Food for Thought

    Get PDF
    Discovered over fifty years ago, autophagy is a double-edged blade. On one hand, it regulates cellular energy sources by “cannibalization” of its own cellular components, feeding on proteins and other unused cytoplasmic factors. On the other, it is a recycling process that removes dangerous waste from the cytoplasm keeping the cell clean and healthy. Failure of the autophagic machinery is translated in dysfunction of the immune response, in aging, and in the progression of pathologies such as Parkinson disease, diabetes, and cancer. Further investigation identified autophagy with a protective role in specific types of cancer, whereas in other cases it can promote tumorigenesis. Evidence shows that treatment with chemotherapeutics can upregulate autophagy in order to maintain a stable intracellular environment promoting drug resistance and cell survival. Leukemia, a blood derived cancer, represents one of the malignancies in which autophagy is responsible for drug treatment failure. Inhibition of autophagy is becoming a strategic target for leukemic stem cell (LSC) eradication. Interestingly, the latest findings demonstrate that LSCs show higher levels of mitochondrial metabolism compared to normal stem cells. With this review, we aim to explore the links between autophagy and metabolism in the hematopoietic system, with special focus on primitive LSCs

    Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia

    Get PDF
    While the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia

    Folate metabolism: a re-emerging therapeutic target in haematological cancers

    Get PDF
    Folate-mediated one carbon (1C) metabolism supports a series of processes that are essential for the cell. Through a number of interlinked reactions happening in the cytosol and mitochondria of the cell, folate metabolism contributes to de novo purine and thymidylate synthesis, to the methionine cycle and redox defence. Targeting the folate metabolism gave rise to modern chemotherapy, through the introduction of antifolates to treat paediatric leukaemia. Since then, antifolates, such as methotrexate and pralatrexate have been used to treat a series of blood cancers in clinic. However, traditional antifolates have many deleterious side effects in normal proliferating tissue, highlighting the urgent need for novel strategies to more selectively target 1C metabolism. Notably, mitochondrial 1C enzymes have been shown to be significantly upregulated in various cancers, making them attractive targets for the development of new chemotherapeutic agents. In this article, we present a detailed overview of folate-mediated 1C metabolism, its importance on cellular level and discuss how targeting folate metabolism has been exploited in blood cancers. Additionally, we explore possible therapeutic strategies that could overcome the limitations of traditional antifolates

    Auto-commentary on: “Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells”

    Get PDF
    We have recently uncovered an abnormal increase in mitochondrial oxidative metabolism in therapy-resistant chronic myeloid leukaemia stem cells (LSCs). By simultaneously disrupting mitochondrial respiration and inhibiting BCR-ABL kinase activity using the antibiotic tigecycline and imatinib respectively, we effectively eradicated LSCs and prevented disease relapse in pre-clinical animal models

    Utilizing stimulated Raman scattering microscopy to study intracellular distribution of label-free ponatinib in live cells

    Get PDF
    Stimulated Raman scattering (SRS) microscopy represents a powerful method for imaging label-free drug dis-tribution with high resolution. SRS was applied to image label-free ponatinib with high sensitivity and speci-ficity in live human chronic myeloid leukemia (CML) cell lines. This was achieved at biologically relevant, na-nomolar concentrations; allowing determination of ponatinib uptake and sequestration into lysosomes during the development of acquired drug resistance and an improved understanding of target engagement

    Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells

    Get PDF
    Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second-and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival(1). However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs)(2-4). Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically(5,6). Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner(7), we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell-enriched (CD34(+) and CD34(+)CD38(-)) and differentiated (CD34(-)) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope-assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both in vitro and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease

    BH3 mimetics in combination with nilotinib or ponatinib represent a promising therapeutic strategy in blast phase chronic myeloid leukemia

    Get PDF
    Dysregulation of the BCL-2 family is implicated in protecting chronic myeloid leukemia (CML) cells from intracellular damage and BCR::ABL1-inhibition with tyrosine kinase inhibitors (TKIs) and may be a viable therapeutic target in blast phase (BP-)CML, for which treatment options are limited. BH3 mimetics, a class of small molecule inhibitors with high-specificity against the prosurvival members of the BCL-2 family, have displayed clinical promise in the treatment of chronic lymphocytic and acute myeloid leukemia as single agents and in combination with standard-of-care therapies. Here we present the first comparison of inhibition of BCL-2 prosurvival proteins BCL-2, BCL-xL and MCL-1 in combination with a second or third generation TKI, crucially with comparisons drawn between myeloid and lymphoid BP-CML samples. Co-treatment of four BP-CML cell lines with the TKIs nilotinib or ponatinib and either BCL-2 (venetoclax), MCL-1 (S63845) or BCL-xL (A-1331852) inhibitors resulted in a synergistic reduction in cell viability and increase in phosphatidylserine (PS) presentation. Nilotinib with BH3 mimetic combinations in myeloid BP-CML patient samples triggered increased induction of apoptosis over nilotinib alone, and a reduction in colony-forming capacity and CD34+ fraction, while this was not the case for lymphoid BP-CML samples tested. While some heterogeneity in apoptotic response was observed between cell lines and BP-CML patient samples, the combination of BCL-xL and BCR::ABL1 inhibition was consistently effective in inducing substantial apoptosis. Further, while BH3 mimetics showed little efficacy as single agents, dual-inhibition of BCL-2 prosurvival proteins dramatically induced apoptosis in all cell lines tested and in myeloid BP-CML patient samples compared to healthy donor samples. Gene expression and protein level analysis suggests a protective upregulation of alternative BCL-2 prosurvival proteins in response to BH3 mimetic single-treatment in BP-CML. Our results suggest that BH3 mimetics represent an interesting avenue for further exploration in myeloid BP-CML, for which alternative treatment options are desperately sought

    Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival

    Get PDF
    Recent evidence suggests CML stem cells are insensitive to kinase inhibitors and responsible for minimal residual disease in treated patients. We investigated whether CML stem cells, in a transgenic mouse model of CML-like disease or derived from patients, are dependent on Bcr-Abl. In the transgenic model, following re-transplantation, donor-derived CML stem cells in which Bcr-Abl expression had been induced and subsequently shut off, were able to persist in vivo and re-initiate leukemia in secondary recipients upon Bcr-Abl re-expression. Bcr-Abl knockdown in human CD34+ CML cells cultured for 12 days in physiological growth factors achieved partial inhibition of Bcr-Abl and downstream targets p-CrkL and p-STAT5, inhibition of proliferation and colony forming cells, but no reduction of input cells. The addition of dasatinib further inhibited p-CrkL and p-STAT5, yet only reduced input cells by 50%. Complete growth factor withdrawal plus dasatinib further reduced input cells to 10%, however the surviving fraction was enriched for primitive leukemic cells capable of growth in long-term culture initiating cell assay and expansion upon removal of dasatinib and addition of growth factors. Together these data suggest that CML stem cell survival is Bcr-Abl kinase independent and suggest curative approaches in CML must focus on kinase-independent mechanisms of resistance

    ULK1 inhibition promotes oxidative stress–induced differentiation and sensitizes leukemic stem cells to targeted therapy

    Get PDF
    Inhibition of autophagy has been proposed as a potential therapy for individuals with cancer. However, current lysosomotropic autophagy inhibitors have demonstrated limited efficacy in clinical trials. Therefore, validation of novel specific autophagy inhibitors using robust preclinical models is critical. In chronic myeloid leukemia (CML), minimal residual disease is maintained by persistent leukemic stem cells (LSCs), which drive tyrosine kinase inhibitor (TKI) resistance and patient relapse. Here, we show that deletion of autophagy-inducing kinase ULK1 (unc-51–like autophagy activating kinase 1) reduces growth of cell line and patient-derived xenografted CML cells in mouse models. Using primitive cells, isolated from individuals with CML, we demonstrate that pharmacological inhibition of ULK1 selectively targets CML LSCs ex vivo and in vivo, when combined with TKI treatment. The enhanced TKI sensitivity after ULK1-mediated autophagy inhibition is driven by increased mitochondrial respiration and loss of quiescence and points to oxidative stress–induced differentiation of CML LSCs, proposing an alternative strategy for treating patients with CML
    corecore