26 research outputs found

    Connectivity between the cerebrum and cerebellum during social and non-social sequencing using dynamic causal modelling

    Get PDF
    This analysis explores the effective connectivity of the cerebellum with the cerebral cortex during the generation of correct sequences of social and non-social events, using dynamic causal modelling (DCM). Our hypothesis is that during human evolution, the cerebellum’s function evolved from a mere coordinator of fluent sequences of motions and actions, to an interpreter of action sequences without overt movements that are important for social understanding. This requires efficient neural communication between the cerebellum and cerebral cortex. In a functional magnetic resonance imaging (fMRI) study, participants generated the correct chronological order of (non-)social events, including stories involving mechanical and social scripts, and true or false beliefs. Across all stories, a DCM analysis of these data revealed, as predicted, bidirectional (closed-loop) connections linking the bilateral posterior cerebellum with the bilateral temporo-parietal junction (TPJ) associated with behavior understanding, and this connectivity pattern was almost entirely significant. There was also a unidirectional connection from the right posterior cerebellum to the precuneus, but no direct connections with the dorsomedial prefrontal cortex (dmPFC). Moreover, all connections emanating from the bilateral posterior cerebellum were negative, indicative of some kind of error signal. Within the cerebral cortex, there were unidirectional connections from the bilateral TPJ to the dmPFC, as well as bidirectional connections between the precuneus and dmPFC, and between the bilateral TPJ. These results confirm that the effective connectivity between the posterior cerebellum and mentalizing areas in the cerebral cortex play a critical role in the understanding and construction of the correct order of social and non-social action sequences

    The role of the cerebellum in social and non-social action sequences : a preliminary LF-rTMS study

    Get PDF
    An increasing number of studies demonstrated the involvement of the cerebellum in (social) sequence processing. The current preliminary study is the first to investigate the causal involvement of the cerebellum in sequence generation, using low-frequency repetitive transcranial magnetic stimulation (LF-rTMS). By targeting the posterior cerebellum, we hypothesized that the induced neuro-excitability modulation would lead to altered performance on a Picture and Story sequencing task, which involve the generation of the correct chronological order of various social and non-social stories depicted in cartoons or sentences. Our results indicate that participants receiving LF-rTMS over the cerebellum, as compared to sham participants, showed a stronger learning effect from pre to post stimulation for both tasks and for all types of sequences (i.e. mechanical, social scripts, false belief, true belief). No differences between sequence types were observed. Our results suggest a positive effect of LF-rTMS on sequence generation. We conclude that the cerebellum is causally involved in the generation of sequences of social and nonsocial events. Our discussion focuses on recommendations for future studies

    Impaired sequence generation: a preliminary comparison between high functioning autistic and neurotypical adults

    No full text
    Earlier research demonstrated robust cerebellar involvement in sequencing, including high-level social information sequencing that requires mental state attributions, termed mentalizing. Earlier research also found cerebellar deficiencies in autism spectrum disorders (ASD) which are characterized by social difficulties. However, studies on high-level social sequencing functionality by persons with ASD are almost non-existent. In this study, we, therefore, perform a comparison between behavioral performances of high-functioning ASD and neurotypical participants on the Picture and Verbal Sequencing Tasks. In these tasks, participants are requested to put separate events (depicted in cartoon-like pictures or behavioral sentences, respectively) in their correct chronological order. To do so, some of these events require understanding of high-level social beliefs, of social routines (i.e., scripts), or nonsocial mechanical functionality. As expected, on the Picture Sequencing task, we observed longer response times for persons with ASD (in comparison with neurotypical controls) when ordering sequences requiring an understanding of social beliefs and social scripts, but not when ordering nonsocial mechanical events. This confirms our hypotheses that social sequence processing is impaired in ASD. The verbal version of this task did not reveal differences between groups. Our results are the first step toward new theoretical insights for social impairments of persons with ASD. They highlight the importance of taking into account sequence processing, and indirectly the cerebellum when investigating ASD difficulties

    A narrative sequencing and mentalizing training for adults with autism: A pilot study

    No full text
    Adults diagnosed with autism experience difficulties with understanding the mental states of others, or themselves (mentalizing) and with adequately sequencing personal stories (narrative coherence). Given that the posterior cerebellum is implicated in both skills, as well as in the etiology of autism, we developed a narrative sequencing and mentalizing training for autistic adults. Participants with an official autism diagnosis were randomly assigned to a Training group (n = 17) or a waiting-list Control group (n = 15). The Training group took part in six weekly sessions in groups of three participants lasting each about 60 min. During training, participants had to (re)tell stories from the perspective of the original storyteller and answer questions that required mentalizing. We found significant improvements in mentalizing about others’ beliefs and in narrative coherence for the Training group compared to the Control group immediately after the training compared to before the training. Almost all participants from the Training group expressed beneficial effects of the training on their mood and half of the participants reported positive effects on their self-confidence in social situations. All participants recommended the current training to others. Results are discussed in light of cerebellar theories on sequencing of social actions during mentalizing. Further improvements to the program are suggested. Our results highlight the potential clinical utility of adopting a neuroscience-informed approach to developing novel therapeutic interventions for autistic populations.</jats:p

    Mind your step : social cerebellum in interactive navigation

    No full text
    The posterior cerebellum contributes to dynamic social cognition by building representations and predictions about sequences in which social interactions typically take place. However, the extent to which violations of prior social expectations during human interaction activate the cerebellum remains largely unknown. The present study examined inconsistent actions, which violate the expectations of desired goal outcomes, by using a social navigation paradigm in which a protagonist presented a gift to another agent that was liked or not. As an analogous non-social control condition, a pen was transported via an assembly line and filled with ink that matched the pen's cap or not. Participants (n = 25) were required to memorize and subsequently reproduce the sequence of the protagonist's or pen's trajectory. As hypothesized, expectation violations in social (vs non-social) sequencing were associated with activation in the posterior cerebellum (Crus 1/2) and other cortical mentalizing regions. In contrast, non-social (vs social) sequencing recruited cerebellar lobules IV-V, the action observation network and the navigation-related parahippocampal gyrus. There was little effect in comparison with a social non-sequencing control condition, where participants only had to observe the trajectory. The findings provide further evidence of cerebellar involvement in signaling inconsistencies in social outcomes of goal-directed navigation

    Sex differences in autistic adults: A preliminary study showing differences in mentalizing, but not in narrative coherence

    No full text
    Studying autism might be a complex endeavor due to its clinical heterogeneity. Little is currently known about potential sex differences in autistic adults, especially regarding mentalizing and narrative coherence. In this study, male and female participants told a personal story about one of their most positive and most negative life events and performed two mentalizing tasks. One of these mentalizing tasks was a recently developed Picture and Verbal Sequencing task that has shown cerebellar recruitment, and which requires mentalizing in a sequential context (i.e., participants chronologically ordered scenarios that required true and false belief mentalizing). Our preliminary comparison shows that males were faster and more accurate on the Picture Sequencing task compared to female participants when ordering sequences involving false beliefs, but not true beliefs. No sex differences were found for the other mentalizing and narrative tasks. These results highlight the importance of looking at sex differences in autistic adults and provide a possible explanation for sex-related differences in daily life mentalizing functions, which suggest a need for more sensitive diagnosis and tailored support

    Social thinking is for doing : the posterior cerebellum supports prediction of social actions based on personality traits

    No full text
    Can we predict the future by reading others' minds? This study explores whether attributing others' personality traits facilitates predictions about their future actions and the temporal order of these future actions. Prior evidence demonstrated that the posterior cerebellar crus is involved in identifying the temporal sequence of social actions and the person's traits they imply. Based on this, we hypothesized that this area might also be recruited in the reverse process; that is, knowledge of another person's personality traits supports predictions of temporal sequences of others' actions. In this study, participants were informed about the trait of a person and then had to select actions that were consistent with this information and arrange them in the most likely temporal order. As hypothesized, the posterior cerebellar crus 1 and crus 2 were strongly activated when compared to a control task which involved only the selection of actions (without temporal ordering) or which depicted non-social objects and their characteristics. Our findings highlight the important function of the posterior cerebellar crus in the prediction of social action sequences in social understanding
    corecore