7 research outputs found

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Development of the user requirements for the Canadian wildfiresat satellite mission

    No full text
    In 2019 the Canadian Space Agency initiated development of a dedicated wildfire monitoring satellite (WildFireSat) mission. The intent of this mission is to support operational wildfire management, smoke and air quality forecasting, and wildfire carbon emissions reporting. In order to deliver the mission objectives, it was necessary to identify the technical and operational challenges which have prevented broad exploitation of Earth Observation (EO) in Canadian wildfire management and to address these challenges in the mission design. In this study we emphasize the first objective by documenting the results of wildfire management end-user engagement activities which were used to identify the key Fire Management Functionalities (FMFs) required for an Earth Observation wildfire monitoring system. These FMFs are then used to define the User Requirements for the Canadian Wildland Fire Monitoring System (CWFMS) which are refined here for the WildFireSat mission. The User Requirements are divided into Observational, Measurement, and Precision requirements and form the foundation for the design of the WildFireSat mission (currently in Phase-A, summer 2020)

    The Atmospheric Imaging Mission for Northern Regions: AIM-North

    No full text
    AIM-North is a proposed satellite mission that would provide observations of unprecedented frequency and density for monitoring northern greenhouse gases (GHGs), air quality (AQ) and vegetation. AIM-North would consist of two satellites in a highly elliptical orbit formation, observing over land from ∼40°N to 80°N multiple times per day. Each satellite would carry a near-infrared to shortwave infrared imaging spectrometer for CO2, CH4, and CO, and an ultraviolet-visible imaging spectrometer for air quality. Both instruments would measure solar-induced fluorescence from vegetation. A cloud imager would make near-real-time observations, which could inform the pointing of the other instruments to focus only on the clearest regions. Multiple geostationary (GEO) AQ and GHG satellites are planned for the 2020s, but they will lack coverage of northern regions like the Arctic. AIM-North would address this gap with quasi-geostationary observations of the North and overlap with GEO coverage to facilitate intercomparison and fusion of these datasets. The resulting data would improve our ability to forecast northern air quality and quantify fluxes of GHG and AQ species from forests, permafrost, biomass burning and anthropogenic activity, furthering our scientific understanding of these processes and supporting environmental policy
    corecore