2,881 research outputs found

    Whose outcomes are they anyway? Report of the pilot evaluation of a joint service\ud

    Get PDF
    Health and social care partnership working is often predicated on the notion that it improves outcomes for service users. Yet there is a lack of evidence linking partnerships to changes in outcomes. Against this background, the Health Services Management Centre at the University of Birmingham designed the Partnership Outcomes Evaluation Toolkit (POET) specifically to evaluate health and social care partnerships in terms of service user outcomes. This paper reports on the field testing of POET with Sandwell Integrated Support Service. This research provided a number of interesting insights into this service, and indicated some dissonance between staff and service user and carer expectations

    Political history in the digital age: the challenges of archiving and analysing born digital sources

    Get PDF
    The vast bulk of source material for historical research is still paper-based. But this is bound to change. Dr Helen McCarthy considers the lessons from the Mile End Institute’s conference on Contemporary Political History in the Digital Age. The specific challenges of using a ‘born digital source’ is an area that requires considerable attention. For political historians, the advent of ‘e-government’ and personal digital archives, and the many formats and artefacts involved, is thrilling but also intimidating

    Current status of gene therapy for breast cancer: progress and challenges

    Get PDF
    Breast cancer is characterized by a series of genetic mutations and is therefore ideally placed for gene therapy intervention. The aim of gene therapy is to deliver a nucleic acid-based drug to either correct or destroy the cells harboring the genetic aberration. More recently, cancer gene therapy has evolved to also encompass delivery of RNA interference technologies, as well as cancer DNA vaccines. However, the bottleneck in creating such nucleic acid pharmaceuticals lies in the delivery. Deliverability of DNA is limited as it is prone to circulating nucleases; therefore, numerous strategies have been employed to aid with biological transport. This review will discuss some of the viral and nonviral approaches to breast cancer gene therapy, and present the findings of clinical trials of these therapies in breast cancer patients. Also detailed are some of the most recent developments in nonviral approaches to targeting in breast cancer gene therapy, including transcriptional control, and the development of recombinant, multifunctional bio-inspired systems. Lastly, DNA vaccines for breast cancer are documented, with comment on requirements for successful pharmaceutical product development

    Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery

    Get PDF
    In this study, dissolving microneedles (MNs) were used to enhance ocular drug delivery of macromolecules. MNs were fabricated using polyvinylpyrrolidone (PVP) polymer of various molecular weights (MWs) containing three model molecules of increasing MW, namely fluorescein sodium and fluorescein isothiocyanate–dextrans (with MW of 70 k and 150 k Da). Arrays (3 × 3) of PVP MNs with conical shape measuring about 800 μm in height with a 300 μm base diameter, containing the model drugs, were fabricated and characterized for their fracture forces, insertion forces (in the sclera and cornea), depth of penetration (using OCT and confocal imaging), dissolution time and in vitro permeation. The average drug content of the MNs (only in MN shafts) ranged from 0.96 to 9.91 μg, and the average moisture content was below 11 %. High MW PVP produced MNs that can withstand higher forces with minimal reduction in needle height. PVP MNs showed rapid dissolution that ranged from 10 to 180 s, which was dependent upon PVP’s MW. In vitro studies showed significant enhancement of macromolecule permeation when MNs were used, across both the corneal and scleral tissues, in comparison to topically applied aqueous solutions. Confocal images showed that the macromolecules formed depots within the tissues, which led to sustained permeation. However, use of MNs did not significantly benefit the permeation of small molecules; nevertheless, MN application has the potential for drug retention within the selected ocular tissues unlike topical application for small molecules. The material used in the fabrication of the MNs was found to be biocompatible with retinal cells (i.e. ARPE-19). Overall, this study reported the design and fabrication of minimally invasive rapidly dissolving polymeric MN arrays which were able to deliver high MW molecules to the eye via the intrastromal or intrascleral route. Thus, dissolving MNs have potential applications in enhancing ocular delivery of both small and macromolecules

    Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers

    Get PDF
    The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration. </jats:p

    Designer peptide delivery systems for gene therapy

    Get PDF
    AbstractGene therapy has long been hailed as a revolutionary approach for the treatment of genetic diseases. The enthusiasm that greeted the harnessing of viruses for therapeutic DNA delivery has been tempered by concerns over safety. These concerns led to the development of alternative strategies for nucleic acid delivery to cells. One such strategy is the utilization of cationic peptides for the condensation of therapeutic DNA for delivery to its target. However, success of DNA as a therapy relies on its delivery to the nucleus of target cells, a process that is complicated by the many hurdles encountered following systemic administration. Non-viral peptide gene delivery strategies have sought inspiration from viruses in order to retain DNA delivering potency, but limit virulence. This review summarizes the progression of peptide-based DNA delivery systems, from rudimentary beginnings to the recent development of sophisticated multi-functional vectors that comprise distinct motifs with dedicated barrier evasion functions. The most promising peptides that achieve cell membrane permeabilization, endosomal escape and nuclear delivery are discussed.</jats:p

    Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity

    Get PDF
    Abstract Background Lowering oxygen from atmospheric level (hyperoxia) to the physiological level (physioxia) of articular cartilage promotes mesenchymal stem cell (MSC) chondrogenesis. However, the literature is equivocal regarding the benefits of physioxic culture on preventing hypertrophy of MSC-derived chondrocytes. Articular cartilage progenitors (ACPs) undergo chondrogenic differentiation with reduced hypertrophy marker expression in hyperoxia but have not been studied in physioxia. This study sought to delineate the effects of physioxic culture on both cell types undergoing chondrogenesis. Methods MSCs were isolated from human bone marrow aspirates and ACP clones were isolated from healthy human cartilage. Cells were differentiated in pellet culture in physioxia (2 % oxygen) or hyperoxia (20 % oxygen) over 14 days. Chondrogenesis was characterized by biochemical assays and gene and protein expression analysis. Results MSC preparations and ACP clones of high intrinsic chondrogenicity (termed high-GAG) produced abundant matrix in hyperoxia and physioxia. Poorly chondrogenic cells (low-GAG) demonstrated a significant fold-change matrix increase in physioxia. Both high-GAG and low-GAG groups of MSCs and ACPs significantly upregulated chondrogenic genes; however, only high-GAG groups had a concomitant decrease in hypertrophy-related genes. High-GAG MSCs upregulated many common hypoxia-responsive genes in physioxia while low-GAG cells downregulated most of these genes. In physioxia, high-GAG MSCs and ACPs produced comparable type II collagen but less type I collagen than those in hyperoxia. Type X collagen was detectable in some ACP pellets in hyperoxia but reduced or absent in physioxia. In contrast, type X collagen was detectable in all MSC preparations in hyperoxia and physioxia. Conclusions MSC preparations and ACP clones had a wide range of chondrogenicity between donors. Physioxia significantly enhanced the chondrogenic potential of both ACPs and MSCs compared with hyperoxia, but the magnitude of response was inversely related to intrinsic chondrogenic potential. Discrepancies in the literature regarding MSC hypertrophy in physioxia can be explained by the use of low numbers of preparations of variable chondrogenicity. Physioxic differentiation of MSC preparations of high chondrogenicity significantly decreased hypertrophy-related genes but still produced type X collagen protein. Highly chondrogenic ACP clones had significantly lower hypertrophic gene levels, and there was little to no type X collagen protein in physioxia, emphasizing the potential advantage of these cells

    Gene Therapy With RALA/iNOS Composite Nanoparticles Significantly Enhances Survival In A Model Of Metastatic Prostate Cancer

    Get PDF
    Abstract Background Recent approvals of gene therapies by the FDA and the EMA for treatment of inherited disorders have further opened the door for assessment of nucleic acid pharmaceuticals for clinical usage. Arising from the presence of damaged or inappropriate DNA, cancer is a condition particularly suitable for genetic intervention. The RALA peptide has been shown to be a potent non-viral delivery platform for nucleic acids. This study examines the use of RALA to deliver a plasmid encoding inducible nitric oxide synthase (iNOS) as an anti-cancer treatment. Methods The physiochemical properties of the RALA/DNA nanoparticles were characterized via dynamic light scattering and transmission electron microscopy. The nanoparticles were labelled with fluorophores and tracked over time using confocal microscopy with orthogonal sections to determine cellular location. In vitro studies were employed to determine functionality of the nanoparticles both for pEGFP-N1 and CMV-iNOS. Nanoparticles were injected intravenously into C57/BL6 mice with blood and serum samples analysed for immune response. PC3-luc2M cells were injected into the left ventricle of SCID mice followed by treatment with RALA/CMV-iNOS nanoparticles to evaluate the tumour response in a metastatic model of prostate cancer. Results Functional cationic nanoparticles were produced with gene expression in PC-3 prostate cancer cells. Furthermore, repeated administrations of RALA/DNA nanoparticles into immunocompetent mice did not produce any immunological response: neutralization of the vector or release of inflammatory mediators. RALA/CMV-iNOS reduced the clonogenicity of PC-3 cells in vitro, and in an in vivo model of prostate cancer metastasis, systemically delivered RALA/CMV-iNOS significantly improved the survival of mice. Conclusion These studies further validate RALA as a genetic cargo delivery vehicle and iNOS as a potent therapy for the treatment of cancer

    Physioxia promotes the articular chondrocyte-like phenotype in human chondroprogenitor-derived self-organized tissue

    Get PDF
    Introduction: Biomaterial-based tissue engineering has not successfully reproduced the structural architecture or functional mechanical properties of native articular cartilage. In scaffold-free tissue engineering systems, cells secrete and organize the entire extracellular matrix over time in response to environmental signals such as oxygen level. In this study, we investigated the effect of oxygen on the formation of neocartilage from human-derived chondrogenic cells. Materials and Methods: Articular chondrocytes (ACs) and articular cartilage progenitor cells (ACPs) derived from healthy human adults were guided toward cell condensation by centrifugation onto plate inserts that were uncoated or coated with either agarose or fibronectin. Neocartilage discs were cultured at hyperoxic (20%) or physioxic (5%) oxygen levels, and biochemical, biomechanical, and molecular analyses were used to compare the cartilage produced by ACs versus ACPs. Results: Fibronectin-coated inserts proved optimal for growing cartilaginous discs from both cell types. In comparison with culture in hyperoxia, AC neocartilage cultured at physioxia exhibited a significant increase in chondrogenic gene expression, proteoglycan production, and mechanical properties with a concomitant decrease in collagen content. At both oxygen levels, ACP-derived neocartilage produced tissue with significantly enhanced mechanical properties and collagen content relative to AC-derived neocartilage. Both ACs and ACPs produced substantial collagen II and reduced levels of collagens I and X in physioxia relative to hyperoxia. Neocartilage from ACPs exhibited anisotropic organization characteristic of native cartilage with respect to collagen VI of the pericellular matrix when compared with AC-derived neocartilage; however, only ACs produced abundant surface-localized lubricin. Discussion and Conclusions: Guiding human-derived cells toward condensation and subsequent culture in physioxia promoted the articular cartilage tissue phenotype for ACs and ACPs. Unlike ACs, ACPs are clonable and highly expandable while retaining chondrogenicity. The ability to generate large tissues utilizing a scaffold-free approach from a single autologous progenitor cell may represent a promising source of neocartilage destined for cartilage repair

    The Diplomatic History of Global Women’s Rights: The British Foreign Office and International Women’s Year, 1975

    Get PDF
    This article explores the British Foreign Office's engagement with International Women's Year (IWY) in 1975, an event which has been viewed as a milestone in histories of transnational feminist activism, and a moment when the status of women became part of mainstream thinking about development, human rights and global security. Much of the existing literature on IWY dwells on the role of non-state actors, especially women's NGOs active at the United Nations (UN). In contrast, this article shifts the lens on to state actors, in order to ask what role diplomats, politicians and ministries of foreign affairs played in the construction of ‘women’ as a global political subject in the late twentieth century. It finds that the Foreign Office's reading of IWY was refracted through the prism of Cold War power politics and postcolonial struggles. Gender politics was conceptualised as essentially a proxy for these larger ideological battles, an approach dating back to Britain's semi-clandestine anti-communist propaganda campaigns after the Second World War. British women's NGOs, by contrast, insisted that women's activism should be accorded an independent dynamic of its own, imagining the possibilities of gender-based solidarities operating across political, social and economic divides. IWY and the subsequent UN Decade for Women tempered this idealism and set the international women's movement on a political learning curve. But, as the article will suggest, the 1970s was also a moment when state elites were forced to confront a new kind of global politics, the repercussions of which for the conduct of foreign policy and diplomatic relations only further fine-grained archival research can fully reveal
    corecore