4 research outputs found

    Comparison of traditional and molecular surveys of fish biodiversity in southern Te Wāhipounamu/Fiordland (Aotearoa/New Zealand)

    No full text
    Abstract Effective management of biodiversity requires regular surveillance of multiple species. Analysis of environmental DNA (eDNA) by metabarcoding holds promise to achieve this relatively easily. However, taxonomy‐focused eDNA surveys need suitable molecular reference data, which are often lacking, particularly at the species level and for remote locations. To evaluate the comparability of environmental DNA surveys and traditional surveys in a real‐life case study in a marine area of high conservation value, we conducted a biodiversity survey of the fish in remote and pristine Te Wāhipounamu/Fiordland (Aotearoa/New Zealand), incorporating multiple data sources. We compared eDNA‐derived species identifications against Baited Remote Underwater Video (BRUV) data collected at the same time and locations as eDNA. We also cross‐referenced both eDNA and BRUV data against literature and the Ocean Biodiversity Information System (OBIS), with literature and OBIS data representing a summary of multiple traditional surveying approaches. In total, we found 116 fish species in our study area. Environmental DNA detected 43 species; however, only three of those species overlap with species known from the literature, OBIS, or our BRUV analyses. A total of 61 fish species were known from the region from the literature, while OBIS listed 28 species, and our BRUV analyses picked up 26 species. BRUV data coincided more strongly than eDNA data with literature and OBIS data. Twenty of the 26 species detected by BRUV were known from literature and OBIS. We argue that limitated DNA reference databases are the main cause of this discrepancy, and our results indicate that eDNA of rare and endangered species can be detected if matching reference data were available. Environmental DNA analyses can only identify species present among reference data and with relaxed taxonomic assignment parameters may converge on relatives of detected species if the actually existing species themselves are missing among reference data. However, the high number of species detected by our eDNA analyses confirms that eDNA could be a powerful tool for biodiversity surveys if suitable investments in local reference databases were made

    Goals, challenges, and next steps in transdisciplinary fisheries research : perspectives and experiences from early-career researchers

    No full text
    Fisheries are highly complex social-ecological systems that often face 'wicked' problems from unsustainable resource management to climate change. Addressing these challenges requires transdisciplinary approaches that integrate perspectives across scientific disciplines and knowledge systems. Despite widespread calls for transdisciplinary fisheries research (TFR), there are still limitations in personal and institutional capacity to conduct and support this work to the highest potential. The viewpoints of early career researchers (ECRs) in this field can illuminate challenges and promote systemic change within fisheries research. This paper presents the perspectives of ECRs from across the globe, gathered through a virtual workshop held during the 2021 World Fisheries Congress, on goals, challenges, and future potential for TFR. Big picture goals for TFR were guided by principles of co-production and included (i) integrating transdisciplinary thinking at all stages of the research process, (ii) ensuring that research is inclusive and equitable, (iii) co-creating knowledge that is credible, relevant, actionable, and impactful, and (iv) consistently communicating with partners. Institutional inertia, lack of recognition of the extra time and labour required for TFR, and lack of skill development opportunities were identified as three key barriers in conducting TFR. Several critical actions were identified to help ECRs, established researchers, and institutions reach these goals. We encourage ECRs to form peer-mentorship networks to guide each other along the way. We suggest that established researchers ensure consistent mentorship while also giving space to ECR voices. Actions for institutions include retooling education programs, developing and implementing new metrics of impact, and critically examining individualism and privilege in academia. We suggest that the opportunities and actions identified here, if widely embraced now, can enable research that addresses complex challenges facing fishery systems contributing to a healthier future for fish and humans alike
    corecore