28 research outputs found

    COL4A1 Mutations Cause Ocular Dysgenesis, Neuronal Localization Defects, and Myopathy in Mice and Walker-Warburg Syndrome in Humans

    Get PDF
    Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene coding for a major basement membrane protein, collagen IV alpha 1 (COL4A1), are a novel cause of MEB/WWS. Using a combination of histological, molecular, and biochemical approaches, we show that heterozygous Col4a1 mutant mice have ocular dysgenesis, neuronal localization defects, and myopathy characteristic of MEB/WWS. Importantly, we identified putative heterozygous mutations in COL4A1 in two MEB/WWS patients. Both mutations occur within conserved amino acids of the triple-helix-forming domain of the protein, and at least one mutation interferes with secretion of the mutant proteins, resulting instead in intracellular accumulation. Expression and posttranslational modification of dystroglycan is unaltered in Col4a1 mutant mice indicating that COL4A1 mutations represent a distinct pathogenic mechanism underlying MEB/WWS. These findings implicate a novel gene and a novel mechanism in the etiology of MEB/WWS and expand the clinical spectrum of COL4A1-associated disorders

    Electoral Campaigns and Relation Mining: Extracting Semantic Network Data from Newspaper Articles

    Full text link
    Among the many applications in social science for the entry and management of data, there are only a few software packages that apply natural language processing to identify semantic concepts such as issue categories or political statements by actors. Although these procedures usually allow efficient data collection, most have difficulty in achieving sufficient accuracy because of the high complexity and mutual relationships of the variables used in the social sciences. To address these flaws, we suggest a (semi-) automatic annotation approach that implements an innovative coding method (Core Sentence Analysis) by computational linguistic techniques (mainly entity recognition, concept identification, and dependency parsing). Although such computational linguistic tools have been readily available for quite a long time, social scientists have made astonishingly little use of them. The principal aim of this article is to gather data on party-issue relationships from newspaper articles. In the first stage, we try to recognize relations between parties and issues with a fully automated system. This recognition is extensively tested against manually annotated data of the coverage in the boulevard newspaper Blick of the Swiss national parliamentary elections of 2003 and 2007. In the second stage, we discuss possibilities for extending our approach, such as by enriching these relations with directional measures indicating their polarity

    The nucleotide prodrug CERC‐913 improves mtDNA content in primary hepatocytes from DGUOK‐deficient rats

    Get PDF
    Loss‐of‐function mutations in the deoxyguanosine kinase (DGUOK) gene result in a mitochondrial DNA (mtDNA) depletion syndrome. DGUOK plays an important role in converting deoxyribonucleosides to deoxyribonucleoside monophosphates via the salvage pathway for mtDNA synthesis. DGUOK deficiency manifests predominantly in the liver; the most common cause of death is liver failure within the first year of life and no therapeutic options are currently available. in vitro supplementation with deoxyguanosine or deoxyguanosine monophosphate (dGMP) were reported to rescue mtDNA depletion in DGUOK‐deficient, patient‐derived fibroblasts and myoblasts. CERC‐913, a novel ProTide prodrug of dGMP, was designed to bypass defective DGUOK while improving permeability and stability relative to nucleoside monophosphates. To evaluate CERC‐913 for its ability to rescue mtDNA depletion, we developed a primary hepatocyte culture model using liver tissue from DGUOK‐deficient rats. DGUOK knockout rat hepatocyte cultures exhibit severely reduced mtDNA copy number (~10%) relative to wild type by qPCR and mtDNA content remains stable for up to 8 days in culture. CERC‐913 increased mtDNA content in DGUOK‐deficient hepatocytes up to 2.4‐fold after 4 days of treatment in a dose‐dependent fashion, which was significantly more effective than dGMP at similar concentrations. These early results suggest primary hepatocyte culture is a useful model for the study of mtDNA depletion syndromes and that CERC‐913 treatment can improve mtDNA content in this model

    Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant

    No full text
    Mitochondrial NAD kinase deficiency (NADK2D, OMIM #615787) is a rare autosomal recessive disorder of NADPH biosynthesis that can cause hyperlysinemia and dienoyl-CoA reductase deficiency (DECRD, OMIM #616034). NADK2 deficiency has been reported in only three unrelated patients. Two had severe, unremitting disease; one died at 4 months and the other at 5 years of age. The third was a 10 year old female with CNS anomalies, ataxia, and incoordination. In two cases mutations in NADK2 have been demonstrated. Here, we report the fourth known case, a 15 year old female with normal intelligence and a mild clinical and biochemical phenotype presumably without DECRD. Her clinical symptoms, which are now stable, became evident at the age of 9 with the onset of decreased visual acuity, bilateral optic atrophy, nystagmus, episodic lower extremity weakness, peripheral neuropathy, and gait abnormalities. Plasma amino acid levels were within normal limits except for mean lysine and proline levels that were 3.7 and 2.5 times the upper limits of normal. Whole exome sequencing (WES) revealed homozygosity for a g.36241900 A>G p. Met1Val start loss mutation in the primary NADK2 transcript (NM_001085411.1) encoding the 442 amino acid isoform. This presumed hypomorphic mutation has not been previously reported and is absent from the v1000GP, EVS, and ExAC databases. Our patient's normal intelligence and stable disease expands the clinical heterogeneity and the prognosis associated with NADK2 deficiency. Our findings also clarify the mechanism underlying NADK2 deficiency and suggest that this disease should be ruled out in cases of hyperlysinemia, especially those with visual loss, and neurological phenotype

    CDDO induces granulocytic differentiation of myeloid leukemic blasts through translational up-regulation of p42 CCAAT enhancer–binding protein alpha

    No full text
    2-Cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) induces differentiation and apoptosis of tumor cells in vitro and in vivo. Here we assessed the effects of CDDO on CCAAT enhancer–binding protein alpha (CEBPA), a transcription factor critical for granulocytic differentiation. In HL60 acute myeloid leukemia (AML) cells, CDDO (0.01 to 2 ÎŒM) induces apoptosis in a dose-dependent manner. Conversely, subapoptotic doses of CDDO promote phagocytic activity and granulocytic-monocytic differentiation of HL60 cells through increased de novo synthesis of p42 CEBPA protein. CEBPA translational up-regulation is required for CDDO-induced granulocytic differentiation and depends on the integrity of the CEBPA upstream open reading frame (uORF). Moreover, CDDO increases the ratio of transcriptionally active p42 and the inactive p30 CEBPA isoform, which, in turn, leads to transcriptional activation of CEBPA-regulated genes (eg, GSCFR) and is associated with dephosphorylation of eIF2α and phosphorylation of eIF4E. In concordance with these results, CDDO induces a CEBPA ratio change and differentiation of primary blasts from patients with acute myeloid leukemia (AML). Because AML is characterized by arrested differentiation, our data suggest the inclusion of CDDO in the therapy of AML characterized by dysfunctional CEBPA expression
    corecore