17 research outputs found
Recommended from our members
Easterly wave disturbances over Northeast Brazil: an observational analysis
This paper aims to identify the circulation associated with Easterly Wave Disturbances (EWDs) that propagate toward the Eastern Northeast Brazil (ENEB) and their impact on the rainfall over ENEB during 2006 and 2007 rainy seasons (April–July). The EWDs identification and trajectory are analyzed using an automatic tracking technique (TracKH). The EWDs circulation patterns and their main features were obtained using the composite technique. To evaluate the TracKH efficiency, a validation was done by comparing the EWDs number tracked against observed cases obtained from an observational analysis. The mean characteristics of EWDs are 5.5-day period, propagation speed of ~9.5 m·s−1, and a 4500 km wavelength. A synoptic analysis shows that between days −2 d and 0 d, the low level winds presented cyclonic relative vorticity and convergence anomalies both in 2006 and 2007. The EWDs signals are strongest at low levels. The EWDs propagation is associated with relative humidity and precipitation positive anomalies and OLR and omega negative anomalies. The EWDs tracks are seen over all ENEB and their lysis occurs between the ENEB and marginally inside the continent. The tracking captured 71% of EWDs in all periods, indicating that an objective analysis is a promising method for EWDs detection
Easterly waves Disturbances over Northeast Brazil: Climatology and Numerical Modeling.
Uma climatologia de 21 anos dos Distúrbios Ondulatórios de Leste (DOLs) sobre a região NEB foi realizada com o intuito de obter um melhor entendimento dos processos dinâmicos e sinóticos do ciclo de vida destes sistemas, incluindo gênese, crescimento/decaimento, trajetória e dissipação. Adicionalmente, foi avaliada a eficiência do modelo de mesoescala WRF em simular este tipo de sistema. A identificação dos DOLs foi obtida de forma subjetiva através de imagens de satélite no canal infravermelho e campos de linhas de corrente e vorticidade relativa nos níveis de 1000, 850, 700, 500 e 200 hPa da reanálise do ERA-Interim. Neste período foram identificados 518 eventos de DOLs, onde 97% (3%) dessas ondas atingiram (não atingiram) a região do NEB, 64% (36%) foram convectivas (não convectivas) e 14% (86%) atingiram a região da Amazônia. Os principais sistemas que deram origem aos DOLs foram: Zona de Convergência Intertropical (ZCIT), Vórtice Ciclônico de Altos Níveis (VCAN), Frentes Frias (FF) e conglomerados convectivos provenientes da costa oeste da África (AF). Além destes, a interação entre os sistemas AF/FF, AF/ZCIT, AF/VCAN e ZCIT/FF estiveram associadas a sua formação. Em média, foram observadas aproximadamente 25 ondas por ano, com máxima (mínima) frequência compreendida entre os meses de Março a Agosto (Setembro a Fevereiro) e, com pronunciada variabilidade interanual. O ciclo de vida dos DOLs foi avaliado de forma objetiva a partir de um método automático de identificação e rastreio (TracKH), onde dos 518 eventos identificados na análise subjetiva, conseguiu capturar 342 ondas ( ~ 66%). A partir desta detecção, uma análise foi feita no nível 850 hPa para determinar as características típicas do seu ciclo de vida, que mostra um pico proeminente entre as longitudes de 35°W e 15°W e latitudes de 20°S e 5°N associado a densidade de gênese. A trajetória e dissipação se concentraram sobre a costa leste do NEB, entre os estados de Alagoas e Rio Grande do Norte, porém a dissipação diminuía a medida que adentrava ao continente. Os padrões sinóticos associados aos DOLs foram analisados através da anomalia de composição durante o período de máxima (úmido) e mínima (seco) frequência desde 3 dias antes até um dia após os DOLs atingirem a costa do NEB. Durante o período úmido, a circulação associada aos DOLs apresentou anomalia ciclônica e confluente, vorticidade negativa e convergência até médios níveis, enquanto que em 200 hPa apresentou apenas a característica do cavado. Por outro lado, para o período seco, estas características foram observadas somente em baixos níveis. Anomalias negativas de movimentos verticais e temperatura e positivas de umidade foram observadas associadas aos DOLs nas duas estações, porém atingindo maiores altitudes durante o período seco. A composição de precipitação indicou que os DOLs são responsáveis por um acréscimo de 16% (4%) durante a estação úmida (seca). As características típicas dessas ondas foram: período médio de 8 (73) dias, comprimento de onda de aproximadamente 4500 (5500) km e velocidade de fase da ordem de 6,5 (0,9) m.s-1, para o período úmido (seco). O modelo WRF simulou os padrões sinóticos, a precipitação e as características típicas associadas aos DOLs de forma coerente, sendo comparado aos resultados do Climate Forecast System Reanalysis (CFSR), porém com maior intensidade, para os eventos de 11 e 17 de junho de 2006.A 21-year climatology of Easterly Wave Disturbances (EWDs) over NEB region was constructed in order to obtain a better understanding of dynamic and synoptic processes life cycle of these systems, including genesis, growth / decay, trajectory and dissipation. Moreover, we evaluated the efficiency of WRF mesoscale model to simulate this type of system. The identification of EWDs was obtained subjectively through satellite images in infrared channel and fields of streamlines and relative vorticity at the levels 1000, 850, 700, 500 and 200 hPa from ERA-Interim reanalysis. During this period, 518 EWDs were identified, where 97% (3%) of these waves hit (not hit) the NEB region, 64% (36%) were convective (non-convective) and 14% (86%) reached the Amazon region. The main systems that gave rise to DOLs were: Intertropical Convergence Zone (ITCZ), Upper-Tropospheric Cyclonic Vortices (UTCV), Cold Fronts (FF) and convective clusters from the west coast of Africa (AF). In addition, the interaction between systems AF/FF, AF/ITCZ, AF/UTCV and ITCZ/FF were associated with their formation. On average, we observed approximately 25 waves per year, with maximum (minimum) frequency between the months of March to August (September to February) and, with pronounced interannual variability. The life cycle of EWDs was evaluated objectively using an automatic method for the identification and tracking (TracKH). From the 518 events identified in the subjective analysis, TracKH was able to capture 342 waves (~ 66%). From this detection, an analysis was made at 850 hPa level to determine the characteristics of their life cycle, which shows a prominent peak around of 35°W-15°W and 20°S-5°N associated with density genesis. The trajectory and dissipation have concentrated over east coast of the NEB, between the states of Alagoas and Rio Grande do Norte, but the dissipation decreased once the systems enter the continent. The synoptic patterns associated with EWDs were analyzed by composing anomaly during the period of maximum (wet) and minimum (dry) frequency from 3 days before until one day after the EWDs reaching the NEB coast. During the wet period, the circulation presented cyclonic and confluent anomaly, negative vorticity and convergence at all levels except at 200 hPa which only showed a trough characteristic while for the dry season, this feature was only observed at low levels. Negative anomalies of vertical movements and temperature and positive humidity associated with EWDs were observed in both seasons, but reaching higher elevations during the dry period. The precipitation composition indicated that the EWDs are responsible for an increase of 16% (4%) during the wet season (dry). Typical characteristics of these waves were: mean period of 8 (73) days, wavelength of about 4500 (5500) km and phase velocity of about 6.5 (0.9) m.s-1 for the wet period (dry). The WRF model simulated the synoptic patterns, precipitation and the typical features associated with EWDs in a coherently manner when compared to the results of the Climate Forecast System Reanalysis (CFSR), but with greater intensity to the events of 11 and 17 June 2006
Climatology of Easterly Wave Disturbances of Northeast Brazil
A 21-year climatology of Easterly Wave Disturbances (EWDs) over Northeastem\ud
Brazil (NEB) region was constructed in order to obtain a better understanding of dynamic and\ud
synoptic processes life cycle of these systems, including genesis, growth I decay, trajectory\ud
and dissipation. The identification of EWDs was obtained subjectively through satellite\ud
images in infrared channel and fields of streamlines and relative vorticity at the levels 1000,\ud
850, 700, 500 and 200 hPa from ERA-Interim reanalysis. During this period, 518 EWDs were\ud
identified, where 97% (3%) ofthese waves reach (do not reach) the NEB region, 64% (36%)\ud
were convective (non-convective) and 14% (86%) reached the Amazon region. The main\ud
systems that gave rise to DOLs were: Intertropical Convergence Zone (ITCZ), Upper-\ud
Tropospheric Cyclonic Vortices (UTCV), Cold Fronts (FF) and convective clusters from the\ud
west coast of Africa (AF). In addition, the interactions between systems AFIFF, AFIITCZ,\ud
AFIUTCV and ITCZIFF were associated with their formation. On average, we observed\ud
approximately 25 waves per year, with maximum (minimum) frequency between the months\ud
ofMarch to August (September to February) and, with pronounced interannual variability.Título: V SIC: Interação oceano-atmosfera: impactos climáticos no presente e cenários futuros. Eventos simultâneos ao V SIC: Encontro Sul Brasileiro de Meteorologia, 5. Florianópolis, Brasil, 2013; Congresso Latino-Americano e Ibérico de Meteorologia da FLISMET, 15. Florianópolis, Brasil, 2013
Regionalization of Climate Change Simulations for the Assessment of Impacts on Precipitation, Flow Rate and Electricity Generation in the Xingu River Basin in the Brazilian Amazon
This study applied regionalization techniques on future climate change scenarios for the precipitation over the Xingu River Basin (XRB) considering the 2021–2080 horizon, in order to assess impacts on the monthly flow rates and possible consequences for electricity generation at the Belo Monte Hydroelectric Power Plant (BMHPP). This is the fourth largest hydroelectric power plant in the world, with a generating capacity of 11,233 MW, and is located in the Brazilian Amazon. Two representative concentration pathways (RCP 4.5 and RCP 8.5) and an ensemble comprising four general circulation models (CanESM2, CNRM-CM5, MPI-ESM-LR and NORESM1-M) were used. The projections based on both scenarios indicated a considerable decrease in precipitation during the rainy season and a slight increase during the dry season relative to the reference period (1981–2010). According to the results, a reduction in the flow rates in Altamira and in the overall potential for power generation in the BMHPP are also to be expected in both analyzed periods (2021–2050 and 2051–2180). The RCP 4.5 scenario resulted in milder decreases in those variables than the RCP 8.5. Conforming to our findings, a reduction of 21.3% in the annual power generation at the BMHPP is expected until 2080, with a corresponding use of 38.8% of the maximum potential of the facility. These results highlight the need for investments in other renewable energy sources (e.g., wind and solar) in order to compensate for the upcoming losses in the BMHPP production
Rainy Season Migration across the Northeast Coast of Brazil Related to Sea Surface Temperature Patterns
Accurate regional seasonal forecasts of the rainy season are essential for the implementation of effective socioeconomic activities and policy. However, current characteristics of the period of occurrence of the rainy season in the Eastern Northeast Brazil (ENEB) region demonstrated that maximum precipitation varies substantially depending on the period analyzed. From 1972 to 2002, the rainy season occurred during the June–July–August (JJA) quarter, while from 1981 to 2011, it occurred in the April–May–June (AMJ) quarter. To access how these differences may be due to different patterns of sea surface temperature (SST), using observed precipitation and SST data from NOAA for the period from 1982 to 2018, this study identified the spatial patterns of inter-annual changes in Pacific and Atlantic SST related to the occurrence of the ENEB rainy seasons. We focus on the statistical method of symmetric mean absolute percentage error (sMAPE) for forecasting these periods based on SST information. Our results revealed five different quarterly periods (FMA, MAM, AMJ, MJJ, JJA) to the rainy season, in which MJJ is more prevalent. The sMAPE values of the SST patterns are inversely proportional to precipitation in the ENEB. Hence, it may be concluded that our climate analysis demonstrates that seasonal SST patterns can be used for forecasting the period of the rainy season
Regionalization of Climate Change Simulations for the Assessment of Impacts on Precipitation, Flow Rate and Electricity Generation in the Xingu River Basin in the Brazilian Amazon
This study applied regionalization techniques on future climate change scenarios for the precipitation over the Xingu River Basin (XRB) considering the 2021–2080 horizon, in order to assess impacts on the monthly flow rates and possible consequences for electricity generation at the Belo Monte Hydroelectric Power Plant (BMHPP). This is the fourth largest hydroelectric power plant in the world, with a generating capacity of 11,233 MW, and is located in the Brazilian Amazon. Two representative concentration pathways (RCP 4.5 and RCP 8.5) and an ensemble comprising four general circulation models (CanESM2, CNRM-CM5, MPI-ESM-LR and NORESM1-M) were used. The projections based on both scenarios indicated a considerable decrease in precipitation during the rainy season and a slight increase during the dry season relative to the reference period (1981–2010). According to the results, a reduction in the flow rates in Altamira and in the overall potential for power generation in the BMHPP are also to be expected in both analyzed periods (2021–2050 and 2051–2180). The RCP 4.5 scenario resulted in milder decreases in those variables than the RCP 8.5. Conforming to our findings, a reduction of 21.3% in the annual power generation at the BMHPP is expected until 2080, with a corresponding use of 38.8% of the maximum potential of the facility. These results highlight the need for investments in other renewable energy sources (e.g., wind and solar) in order to compensate for the upcoming losses in the BMHPP production
WRF Sensitivity for Seasonal Climate Simulations of Precipitation Fields on the CORDEX South America Domain
Dynamic numerical models of the atmosphere are the main tools used for weather and climate forecasting as well as climate projections. Thus, this work evaluated the systematic errors and areas with large uncertainties in precipitation over the South American continent (SAC) based on regional climate simulations with the weather research and forecasting (WRF) model. Ten simulations using different convective, radiation, and microphysical schemes, and an ensemble mean among them, were performed with a resolution of 50 km, covering the CORDEX-South America domain. First, the seasonal precipitation variability and its differences were discussed. Then, its annual cycle was investigated through nine sub-domains on the SAC (AMZN, AMZS, NEBN, NEBS, SE, SURU, CHAC, PEQU, and TOTL). The Taylor Diagrams were used to assess the sensitivity of the model to different parameterizations and its ability to reproduce the simulated precipitation patterns. The results showed that the WRF simulations were better than the ERA-interim (ERAI) reanalysis when compared to the TRMM, showing the added value of dynamic downscaling. For all sub-domains the best result was obtained with the ensemble compared to the satellite TRMM. The largest errors were observed in the SURU and CHAC regions, and with the greatest dispersion of members during the rainy season. On the other hand, the best results were found in the AMZS, NEBS, and TOTL regions
Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment
This study aims to evaluate wind speed and significant wave height data from the Copernicus Marine Environment Monitoring Service (CMEMS) reanalysis using buoy measurements for offshore energy application off the east coast of Brazil. Such analysis has become important, since reanalysis datasets can be fundamental tools in identifying regions with wind energy potential that are suitable for the installation of offshore farms. Two sets of reanalysis were used: wind speed (with spatial resolution of 0.25° and temporal resolution of 6 h) and significant wave height (with spatial resolution of 0.2° and temporal resolution of 3 h). For validation, seven MetOcean buoys were selected. In the statistical validation, Pearson’s correlation, coefficient of determination (R2), slope of the straight line, root mean square error (RMSE), mean square error (MSE), probability density function (PDF), mean and standard deviation were calculated. In the evaluation of offshore wind energy resources, the calculation of energy density was performed. The results showed correlations above 0.70 for wind speed and above 0.91 for significant wave height, and additionally, the RMSE values showed maximums of 2.31 m/s for wind speed and 0.28 cm for significant wave height. In the PDF comparison of buoy data and reanalysis, similarities were observed, mainly in the PDF parameters. The energy density presented values consistent with other studies (352–461 W/m²). The results show that the reanalysis data can be applicable in studies focusing on offshore wind potential
Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment
This study aims to evaluate wind speed and significant wave height data from the Copernicus Marine Environment Monitoring Service (CMEMS) reanalysis using buoy measurements for offshore energy application off the east coast of Brazil. Such analysis has become important, since reanalysis datasets can be fundamental tools in identifying regions with wind energy potential that are suitable for the installation of offshore farms. Two sets of reanalysis were used: wind speed (with spatial resolution of 0.25° and temporal resolution of 6 h) and significant wave height (with spatial resolution of 0.2° and temporal resolution of 3 h). For validation, seven MetOcean buoys were selected. In the statistical validation, Pearson’s correlation, coefficient of determination (R2), slope of the straight line, root mean square error (RMSE), mean square error (MSE), probability density function (PDF), mean and standard deviation were calculated. In the evaluation of offshore wind energy resources, the calculation of energy density was performed. The results showed correlations above 0.70 for wind speed and above 0.91 for significant wave height, and additionally, the RMSE values showed maximums of 2.31 m/s for wind speed and 0.28 cm for significant wave height. In the PDF comparison of buoy data and reanalysis, similarities were observed, mainly in the PDF parameters. The energy density presented values consistent with other studies (352–461 W/m²). The results show that the reanalysis data can be applicable in studies focusing on offshore wind potential