10 research outputs found

    Assessing the efficiency of seepage control measures in earthfill dams

    No full text
    Abstract Seepage control in earthfill dams is a major concern during different phases of dam construction and operation. More than 30% of earthfill dam failures occur due to uncontrolled flow in the dam body and foundation. Seepage control measures, designed and installed at suspected sites of uncontrolled flow, thus play a vital role in stabilizing earthfill dams. However, the actual efficiency of seepage control measures often falls short of expected performance due to soil heterogeneity and changes over time. Assessing the performance of seepage control measures based on monitoring and modeling is necessary to avoid abrupt failures in earthfill dams. In this study, we developed a novel method for quantifying the efficiency of seepage control measures in earthfill dams based on combined seepage modeling and monitoring data. We tested the method by applying it to assess the efficiency of seepage control components at the Doroudzan dam, Iran. The results revealed that the overall efficiency of the dam’s seepage control measures (depending on water level in the reservoir) was 51–70%, based on the magnitude of discharged flow. The efficiency of three major seepage control devices, the chimney drain, cutoff wall, and grouting diaphragm in the left abutment, was 76–82%, 68–74%, and 16–19%, respectively

    New indices for assessing changes in seasons and in timing characteristics of air temperature

    No full text
    Abstract Previous studies examining climate change and changes in the timing of seasons have used a fixed temperature threshold for season onset. In this study, the timing of seasons was determined using non-fixed threshold methods. Twelve new timing indices were defined to account for shifts in seasons and season onset day, thermal centroid day, and length. The Mann-Kendall test, Theil-Sen’s slope estimator, sequential Mann-Kendall test, and least square linear regression were used to assess trends. The timing indices were examined using data from two meteorological stations in Iran with 50 years of records. Spatio-temporal variations in each index over 30 years (1987–2016) were then determined for Khuzestan province in southwestern Iran. Trend analysis for several indices indicated that the timing of seasons had probably changed in the south and west of the study area, while mountainous regions showed non-significant trends. Based on the hottest and coldest 90-day periods (summer and winter, respectively), during the three decades studied, spring lengthened by 5–10 days/decade in the plain region of Khuzestan province and autumn shortened by about 5–8 days/decade. The centroid of winter occurred earlier, by 2–5 days/decade, in the plains area, while the thermal centroid of summer did not change significantly. Overall, the difference between the thermal centroid of winter and summer (Cwin-sum) in the plains area significantly decreased, by 6–8 days/decade, in the 30-year period

    Reliability analysis of stability against piping and sliding in diversion dams, considering four cutoff wall configurations

    No full text
    Abstract The stability against piping and sliding, which is subject to numerous sources of uncertainty, is of great importance in the design of diversion dams. In this study, the performance of four cutoff wall configurations, including a single wall and two walls with half the length of the single wall, was evaluated stochastically using the random finite element method. The Cholesky decomposition technique in conjunction with three types of Auto-Correlation Function (ACF) was employed to generate numerous random fields. The results indicate that the probabilities of failure related to different cutoff wall configurations are similar, considering isotropic hydraulic conductivity. However, there are noticeable differences between the probabilities of failure of these configurations in anisotropic situations. Moreover, the use of a single cutoff wall on the upstream face of an impervious blanket provides the lowest probability of failure for piping. In addition, the exponential ACF ends up with greater exit hydraulic gradients than the second-order Markov and binary noise ACFs. In addition, the sliding stability of the ordinary and earthquake load combinations was examined stochastically using random field theory and Monte Carlo Simulation (MCS). The probability of failure appears to increase with an increase in the autocorrelation distance

    Probabilistic simulation of advection-reaction-dispersion equation using random lattice Boltzmann method

    No full text
    Abstract Mass transfer is subject to numerous sources of uncertainties due to scarcity of observational data. In this research, a numerical procedure was developed for the probabilistic study of a two-dimensional advection-dispersion problem, while considering chemical reactions. Innovatively, the lattice Boltzmann method was coupled with the concept of random field theory for the probabilistic simulations. The effects of various coefficients of variations (COV) and a number of autocorrelation distances were considered for the stochastic parameters, including dispersion coefficient, pore velocity, and the reaction term. The results indicated that the introduced probabilistic framework can be employed to effectively describe the effects of uncertainties in parameters related to the advection-dispersion equation. Moreover, it was deduced that the mass travel time and the time-concentration curves were influenced significantly by the variations of COV and autocorrelation distance for pore velocity. Interestingly, the mass transfer in the transverse direction increased (through the dispersion phenomenon) with a rise in the values of COV for longitudinal pore velocity. However, different values of COV and autocorrelation distances for the dispersion coefficient and the reaction term caused small alterations in the mass travel time and time-concentration curve

    Analysis of effective environmental flow release strategies for Lake Urmia restoration

    No full text
    Abstract Saline lakes have diminished considerably due to large-scale irrigation projects throughout the world. Environmental flow (EF) release from upstream reservoirs could help conserve and restore these lakes. However, experiences from regions lacking environmental legislation or with insufficient water resources management show that, despite EF allocation, farmers tend to use all available water for agriculture. In this study, we employed a new method for designing environmental flow release strategies to restore desiccated terminal lakes in arid and semi-arid regions with intensive cultivation within the catchment. The novelty of the method is that it takes into account farmers’ water use behavior and the natural flow regime in upstream systems to design an optimum monthly EF release strategy for reservoirs. We applied the method to the water resource system of Lake Urmia, once the largest saline lake in the Middle East and now one of the most endangered saline lakes in the world. The analysis showed that the EF released is exploited by lowland farmers before reaching Lake Urmia and that inflow to the lake from some rivers has decreased by up to 80%. We propose a new EF release strategy that requires a considerable change in practice whereby water is released in the shortest possible time (according to reservoir outlet capacity) during the period of lowest irrigation demand in winter. Restoring the lake to minimum ecological level would require 2.4–3.4 km³ EF allocation by different methods of release based on the recent condition (2002–2011) of the lake

    Variation in physical characteristics of rainfall in Iran, determined using daily rainfall concentration index and monthly rainfall percentage index

    No full text
    Abstract Variations in rainfall characteristics play a key role in available water resources for a country. In this study, spatial and temporal variations in rainfall in Iran were determined using the daily rainfall concentration index (DRCI) and monthly rainfall percentage index (MRPI), based on 30-year (1987–2016) daily precipitation records from 80 meteorological stations throughout Iran. The results showed that MRPI differed between locations within Iran, with increasing or decreasing trends observed in different areas. The highest significant decreasing trend in MRPI (3–7% per decade) was found for March rainfall in western Iran, and the highest increasing trend in MRPI (3–7% per decade) for November rainfall in eastern and southern Iran. The DRCI values obtained varied from 0.57 to 0.71, indicating moderate and high rainfall concentrations, with the highest DRCI values in coastal zones of Iran near the Caspian Sea and the Persian Gulf. Trend analysis showed increasing trends in DRCI values at 80% of meteorological stations, and these trends were significant at 37% of those stations

    The mirage water concept and an index-based approach to quantify causes of hydrological changes in semi-arid regions

    No full text
    Abstract In semi-arid regions, reduced river flows present is a major challenge in water resources management. We present a new standardized contribution of rainfall to runoff index (SCRI) for evaluating changes in rainfall contribution to river flow. We employ the standardized precipitation index (SPI), standardized discharge index (SDI) and SCRI to characterize meteorological drought, hydrological drought and land-use change impacts on river flow, respectively. These indices are applied to the Mond River Basin (Iran), which is regulated by the Salman Farsi and Tangab dams since 2006. A new concept called ‘mirage water’ is proposed that represents the reduced water delivery to downstream areas due to new developments and water withdrawals in headwater tributaries. In particular, mirage water accounts for changes in upstream water consumption between the planning phase and construction/operation life of dams. We recommend that this concept be used for communication with decision makers and managers to clarify the need for revising dimensions of planned dams

    The effects of extremes and temporal scale on multifractal properties of river flow time series

    No full text
    Abstract For accurate forecasting of extreme events in rivers, streamflow time series with sub‐daily temporal resolution (1–6 hour) are preferable, but discharge time series for long rivers are usually available at daily or monthly resolution. In this study, the scaling properties of hourly and daily streamflow time series were measured. As an innovation, the effects of extreme values on the multifractal behavior of these series were evaluated. Interestingly, both hourly and daily discharge records led to nearly identical scaling trends and identical crossover times. Daily and hourly discharge time series appeared to be non‐stationary when the timescale ranged from 75 to 366 days. Otherwise, the signals may be considered stationary time series. In addition, the results indicated that the extreme values strongly contribute to the multifractality of the series. The width of singularity spectra decreased considerably when the extreme events were removed from both hourly and daily discharge records

    Urban flood risk mapping using data-driven geospatial techniques for a flood-prone case area in Iran

    No full text
    Abstract In an effort to improve tools for effective flood risk assessment, we applied machine learning algorithms to predict flood-prone areas in Amol city (Iran), a site with recent floods (2017–2018). An ensemble approach was then implemented to predict hazard probabilities using the best machine learning algorithms (boosted regression tree, multivariate adaptive regression spline, generalized linear model, and generalized additive model) based on a receiver operator characteristic-area under the curve assessment. The algorithms were all trained and tested on 92 randomly selected points, information from a flood inundation survey, and geospatial predictor variables (precipitation, land use, elevation, slope percent, curve number, distance to river, distance to channel, and depth to groundwater). The ensemble model had 0.925 and 0.892 accuracy for training and testing data, respectively. We then created a vulnerability map from data on building density, building age, population density, and socio-economic conditions and assessed risk as a product of hazard and vulnerability. The results indicated that distance to channel, land use, and runoff generation were the most important factors associated with flood hazard, while population density and building density were the most important factors determining vulnerability. Areas of highest and lowest flood risks were identified, leading to recommendations on where to implement flood risk reduction measures to guide flood governance in Amol city

    Unsustainability syndrome:from meteorological to agricultural drought in arid and semi-arid regions

    No full text
    Abstract Water is the most important resource for sustainable agriculture in arid and semi-arid regions, where agriculture is the mainstay for rural societies. By relating the water usage to renewable water resources, we define three stages from sustainable to unsustainable water resources: (1) sustainable, where water use is matched by renewable water capacity, ensuring sustainable water resources; (2) transitional, where water use occasionally exceeds renewable water capacity; and (3) unsustainable, with lack of water resources for agriculture, society, and the environment. Using available drought indicators (standardized precipitation index (SPI) and streamflow drought index (SDI)) and two new indices for agricultural drought (overall agricultural drought index (OADI) and agricultural drought index (ADI)), we evaluated these stages using the example of Fars province in southern Iran in the period 1977–2016. A hyper-arid climate prevailed for an average of 32% of the province’s spatio-temporal coverage during the study period. The area increased significantly from 30.6% in the first decade (1977–1986) to 44.4% in the last (2006–2015). The spatiotemporal distribution of meteorological drought showed no significant negative trends in annual precipitation during 1977–2016, but the occurrence of hydrological droughts increased significantly in the period 1997–2016. The expansion of irrigated area, with more than 60% of rainfed agriculture replaced by irrigated agriculture (especially between 1997 and 2006), exerted substantial pressure on surface water and groundwater resources. Together, climate change, reduced river flow, and significant declines in groundwater level in major aquifers led to unsustainable use of water resources, a considerable reduction in irrigated area, and unsustainability in agricultural production in the period 2006–2015. Analysis of causes and effects of meteorological, hydrological, and agricultural drought in the area identified three clear stages: before 1997 being sustainable, 1997–2006 being transitional, and after 2006 being unsustainable
    corecore