22 research outputs found

    Steering the structure and selectivity of CO<sub>2</sub> electroreduction catalysts by potential pulses

    Get PDF
    Convoluted selectivity trends and a missing link between reaction product distribution and catalyst properties hinder practical applications of the electrochemical CO2 reduction reaction (CO2RR) for multicarbon product generation. Here we employ operando X-ray absorption and X-ray diffraction methods with subsecond time resolution to unveil the surprising complexity of catalysts exposed to dynamic reaction conditions. We show that by using a pulsed reaction protocol consisting of alternating working and oxidizing potential periods that dynamically perturb catalysts derived from Cu2O nanocubes, one can decouple the effect of the ensemble of coexisting copper species on the product distribution. In particular, an optimized dynamic balance between oxidized and reduced copper surface species achieved within a narrow range of cathodic and anodic pulse durations resulted in a twofold increase in ethanol production compared with static CO2RR conditions. This work thus prepares the ground for steering catalyst selectivity through dynamically controlled structural and chemical transformations

    Growth and oxidation processes of Pt nanoparticles

    No full text

    Surface Sensitive X-ray Diffraction From Model Catalysts at Work

    No full text

    Growth and oxidation processes of Pt nanoparticles

    No full text

    Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    No full text
    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution

    High-Energy Surface X-ray Diffraction for Fast Surface Structure Determination

    No full text
    Understanding the interaction between surfaces and their surroundings is crucial in many materials-science fields such as catalysis, corrosion, and thin-film electronics, but existing characterization methods have not been capable of fully determining the structure of surfaces during dynamic processes, such as catalytic reactions, in a reasonable time frame. We demonstrate an x-ray-diffraction–based characterization method that uses high-energy photons (85 kiloelectron volts) to provide unexpected gains in data acquisition speed by several orders of magnitude and enables structural determinations of surfaces on time scales suitable for in situ studies. We illustrate the potential of high-energy surface x-ray diffraction by determining the structure of a Pd surface in situ during catalytic CO oxidation and follow dynamic restructuring of the surface with subsecond time resolution
    corecore