121 research outputs found

    p14ARF Hypermethylation Is Common but INK4a-ARF Locus or p53 Mutations Are Rare in Merkel Cell Carcinoma

    Get PDF
    Although the exact molecular mechanisms of Merkel cell carcinoma (MCC) tumorigenesis are unknown, they likely involve complex genetic alterations and mutations similar to those seen in many other cancers. In this study, we obtained MCCs from 21 elderly patients (19 women, 2 men) and analyzed their DNA for mutation of exons of interest in several tumor-suppressor genes or oncogenes known to be frequently mutated in skin cancer: p53 (exons 4–8), Ras (exons 1 and 2), c-Kit (exon 11), and the INK4a-ARF locus (encoding p14 and p16) (exons 1 and 2). Direct sequence analysis revealed p53 mutations (that is, at codons 224, 234, and 294) in three tumors (14%) and p16INK4a mutations (that is, at codon 6) in one (5%). No mutations were detected in Ha-Ras, Ki-Ras, N-Ras, c-Kit, or p14ARF. On the other hand, methylation-specific PCR revealed methylation of p14ARF promoter DNA in eight of 19 analyzable tumor samples (42%) and p16INK4a promoter DNA in one of 19 analyzable tumor samples (5%). Together, these findings suggest that p14ARF silencing may be an important mechanism in MCC tumorigenesis, and thus a potential target for therapeutic intervention in this highly aggressive tumor type

    Decoding circulating tumor DNA to identify durable benefit from immunotherapy in lung cancer

    Get PDF
    Objectives: Predicting the outcome of immunotherapy-treated non-small cell lung cancer (NSCLC) patients is challenging. Measuring circulating tumor DNA (ctDNA) in plasma is promising, but its application for outcome delineation needs further refinement. Since most information from the next-generation sequencing (NGS) panel is typically left unused, we aim to integrate more information. Materials and Methods: Patient and ctDNA data were compiled from five published studies involving advanced NSCLC. Plasma samples collected prior (t0) and early during (t1) immunotherapy were selected, tracking the changes of the highest t0 variant per gene. Durable benefit (DB, defined as progression free survival ≥ ½ year) was predicted. Performance was quantified using the integrated receiver operating characteristic curve (ROC AUC) and compared with the traditional molecular response (MR). Results: A total of 365 patients were pooled. Seven recurrently mutated genes were selected which optimally predicted DB (ROC AUC: 0.77-0.11+0.10), outperforming the MR predictor (with a ROC AUC: 0.64-0.11+0.11). Inclusion of patient characteristics led to a slight further improvement (ROC AUC: 0.80-0.10+0.09). The model performed satisfactory across all ctDNA platforms despite differences in panel size and content. Conclusion: Relative to a non-informative classifier (ROC AUC: 0.5), a twofold improvement in predictive value was achieved compared to MR by an integration of changes across seven selected genes in immunotherapy-treated NSCLC patients, whilst being broadly applicable across ctDNA NGS panels

    UV Fingerprints Predominate in the PTCH Mutation Spectra of Basal Cell Carcinomas Independent of Clinical Phenotype

    Get PDF
    Basal cell carcinoma (BCC) shows a wide interpatient variation in lesion accrual. To determine whether certain tumorigenic fingerprints and potentially predisposing patched (PTCH) tumor suppressor single-nucleotide polymorphisms (SNPs) are distributed differently among sporadic BCC patients, we compared the PTCH mutation spectra in early-onset BCC (first lesion at age <35 years), regular BCC (first lesion at age ≥35 years and <10 lesions), and multiple BCC (≥10 lesions). The PTCH gene was mutated in 29 of 60 cases (48%). Most of the PTCH mutations bore the UV fingerprint (i.e., C → T or tandem CC → TT transitions at dipyrimidine sites). However, neither the proportion nor the spectra of exonic PTCH mutations differed significantly among the three groups. A large number of SNPs (IVS10+99C/T, IVS11-51G/C, 1665T/C, 1686C/T, IVS15+9G/C, IVS16-80G/C, IVS17+21G/A, and 3944C/T or its combinations) were also detected, but again their incidence did not differ significantly among the groups. Interestingly, expression of the IVS16-80G/C and the IVS17+21G/A genotype did not achieve the Hardy–Weinberg equilibrium in patients with regular and/or early-onset BCC. These data suggest that a (UV-) mutated PTCH gene is important for sporadic BCC formation independent of clinical phenotype and that the IVS16-80G/C and/or IVS17+21G/A SNP site might be important for tumorigenesis in certain BCC patients

    The clinical features of polymerase proof-reading associated polyposis (PPAP) and recommendations for patient management

    Get PDF
    Pathogenic germline exonuclease domain (ED) variants of POLE and POLD1 cause the Mendelian dominant condition polymerase proof-reading associated polyposis (PPAP). We aimed to describe the clinical features of all PPAP patients with probably pathogenic variants. We identified patients with a variants mapping to the EDs of POLE or POLD1 from cancer genetics clinics, a colorectal cancer (CRC) clinical trial, and systematic review of the literature. We used multiple evidence sources to separate ED variants into those with strong evidence of pathogenicity and those of uncertain importance. We performed quantitative analysis of the risk of CRC, colorectal adenomas, endometrial cancer or any cancer in the former group. 132 individuals carried a probably pathogenic ED variant (105 POLE, 27 POLD1). The earliest malignancy was colorectal cancer at 14. The most common tumour types were colorectal, followed by endometrial in POLD1 heterozygotes and duodenal in POLE heterozygotes. POLD1-mutant cases were at a significantly higher risk of endometrial cancer than POLE heterozygotes. Five individuals with a POLE pathogenic variant, but none with a POLD1 pathogenic variant, developed ovarian cancer. Nine patients with POLE pathogenic variants and one with a POLD1 pathogenic variant developed brain tumours. Our data provide important evidence for PPAP management. Colonoscopic surveillance is recommended from age 14 and upper-gastrointestinal surveillance from age 25. The management of other tumour risks remains uncertain, but surveillance should be considered. In the absence of strong genotype–phenotype associations, these recommendations should apply to all PPAP patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10689-021-00256-y

    Molecular profiling of soft-tissue sarcomas with FoundationOne® Heme identifies potential targets for sarcoma therapy: a single-centre experience

    Get PDF
    Background: Molecular diagnosis has become an established tool in the characterisation of adult soft-tissue sarcomas (STS). FoundationOne ® Heme analyses somatic gene alterations in sarcomas via DNA and RNA-hotspot sequencing of tumour-associated genes. Methods: We evaluated FoundationOne ® Heme testing in 81 localised STS including 35 translocation-associated and 46 complex-karyotyped cases from a single institution. Results: Although FoundationOne ® Heme achieved broad patient coverage and identified at least five genetic alterations in each sample, the sensitivity for fusion detection was rather low, at 42.4%. Nevertheless, potential targets for STS treatment were detected using the FoundationOne ® Heme assay: complex-karyotyped sarcomas frequently displayed copy-number alterations of common tumour-suppressor genes, particularly deletions in TP53 , NF1 , ATRX , and CDKN2A . A subset of myxofibrosarcomas (MFS) was amplified for HGF ( n  = 3) and MET ( n  = 1). PIK3CA was mutated in 7/15 cases of myxoid liposarcoma (MLS; 46.7%). Epigenetic regulators (e.g. MLL2 and MLL3 ) were frequently mutated. Conclusions: In summary, FoundationOne ® Heme detected a broad range of genetic alterations and potential therapeutic targets in STS (e.g. HGF/MET in a subset of MFS, or PIK3CA in MLS). The assay’s sensitivity for fusion detection was low in our sample and needs to be re-evaluated in a larger cohort
    • …
    corecore