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Although the exact molecular mechanisms of Merkel cell carcinoma (MCC) tumorigenesis are unknown, they
likely involve complex genetic alterations and mutations similar to those seen in many other cancers. In this
study, we obtained MCCs from 21 elderly patients (19 women, 2 men) and analyzed their DNA for mutation of
exons of interest in several tumor-suppressor genes or oncogenes known to be frequently mutated in skin
cancer: p53 (exons 4–8), Ras (exons 1 and 2), c-Kit (exon 11), and the INK4a-ARF locus (encoding p14 and p16)
(exons 1 and 2). Direct sequence analysis revealed p53 mutations (that is, at codons 224, 234, and 294) in three
tumors (14%) and p16INK4a mutations (that is, at codon 6) in one (5%). No mutations were detected in Ha-Ras,
Ki-Ras, N-Ras, c-Kit, or p14ARF. On the other hand, methylation-specific PCR revealed methylation of p14ARF
promoter DNA in eight of 19 analyzable tumor samples (42%) and p16INK4a promoter DNA in one of 19
analyzable tumor samples (5%). Together, these findings suggest that p14ARF silencing may be an important
mechanism in MCC tumorigenesis, and thus a potential target for therapeutic intervention in this highly
aggressive tumor type.
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INTRODUCTION
Merkel cell carcinoma (MCC) (also known as trabecular
carcinoma, small-cell carcinoma of the skin, and primary
cutaneous neuroendocrine carcinoma) is a rare but very
aggressive skin cancer that occurs predominantly on sun-
exposed body parts of elderly people (Taylor et al., 2005). In
the United States, the estimated incidence is 0.34 cases per
100,000 person years. MCC is assumed to arise from Merkel
cells, epithelial-like neuroendocrine cells found in the
epidermis, hair follicles, and mucosa. The prognosis for
patients with MCC is poor; depending on the stage, the
overall 5-year survival rate ranges between 25 and 75%
(Agelli and Clegg, 2003; Suarez et al., 2004). UV radiation is
thought to be a principal cause of MCC, although its exact
role in this regard is not clear. It may be that UV exposure
exerts a combination of tumor-initiating, tumor-promoting,
and/or immunosuppressive effects (cited in Kreimer-Erlacher
et al., 2003). It may be that an increase in Merkel cell density
in chronically sun-exposed body parts raises the overall risk
of developing MCC (Moll et al., 1990). In any case, the

molecular alterations underlying the development and
progression of MCC are poorly understood; indeed, unlike
the case for other nonmelanoma skin cancers (for example,
squamous cell carcinoma (SCC) and basal cell carcinoma), in
which the tumor-suppressor gene p53 (Ziegler et al., 1993;
Agar et al., 2004) or the patched gene (Hahn et al., 1996;
Johnson et al., 1996; Heitzer et al., 2007) have been
identified as the major players, the primary gene responsible
for MCC tumorigenesis has not yet been identified.

Despite this gap in knowledge, we speculated that the
tumorigenesis of MCC, like that of many other cancers,
results in part from the concerted actions of groups of genes.
For instance, malignant melanoma, which in many respects is
very similar to MCC, has a complex mutational profile, which
involves alterations in BRAF (Daniotti et al., 2004), Ras
(Bos, 1989), p53 (Ziegler et al., 1993), c-Kit (Willmore-Payne
et al., 2005), and the INK4a-ARF locus (Pollock and
Hayward, 1996). More recently, research on epigenetic
mechanisms of cancer such as altered gene methylation
status or histone modification has shed other light on MCC
tumorigenesis. Aberrant DNA methylation is now thought
to be one of the most common molecular alterations in many
cancer cell types (Esteller, 2005). For instance, molecular
genetic studies have revealed that the p16INK4a gene is
frequently inactivated by 50-CpG hypermethylation in
primary central nervous system lymphoma (Nakamura
et al., 2001) and cutaneous SCC (Brown et al., 2004),
and that the human p14ARF promoter is aberrantly
methylated in gliomas (Nakamura et al., 2001), colorectal
adenomas and carcinomas (Esteller et al., 2000), esophageal
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carcinomas (Xing et al., 1999), and cutaneous SCCs (Brown
et al., 2004).

In this study, we obtained DNA samples from 21 MCCs
and analyzed them for the presence of gene mutations
commonly found in other forms of skin cancer, namely, p53
(exons 4–8); Ha-, Ki-, and N-Ras (exons 1 and 2); c-Kit
(exon 11); and the INK4a-ARF locus, which encodes
p16INK4a and p14ARF (exons 1 and 2). We also
examined the methylation status of the promoter regions of
the INK4a-ARF locus by methylation-specific PCR
(MSPCR) and the protein expression status of p16INK4a and
p14ARF by immunohistochemical staining. As a result, we
found that in our sampling of MCCs, all genes of interest were
rarely mutated, but methylation of p14ARF was very
common.

RESULTS
p53 and INK4a-ARF locus mutations are rare and Ras and c-Kit
mutations are absent in MCC

DNA sequence analysis of 21 primary MCCs revealed a total
of three p53 mutations in three cases (14%) and one INK4a-
ARF mutation (affecting p16 protein expression) in one case
(5%) (Table 1). No mutations at all were detected in Ha-, Ki-,
or N-Ras, or in c-Kit (exon 11). Concerning p53, we detected
two mutations affecting the amino-acid sequence (that is, a
T:A-A:A transversion in tumor 6 (exon 7, codon 234) and a
frameshift-inducing deletion of G in tumor 13 (exon 8, codon
294)), and another mutation causing a silent G:C-A:T
transition (that is, UV-type mutation) in tumor 19 (exon 6,
codon 224) (Figure 1). All p53 mutations that we detected
occurred in the highly conserved middle region of p53,

Table 1. Results of sequencing analysis

p531 (exons 5�8) INK4a-ARF2 (exons 1+2) Ha-, Ki-, and N-Ras3 (exons 1+2)

Mutation Mutation Mutation

T Site Base change aa change SNP4 Site Base change aa change SNP5 Site Base change aa change SNP6

1 None None None None None None

2 None Codon 727 None None None None

3 None None C42G gaC-gaG D14E None None Codon 278

4 None Codon 727 None None NR NR

5 None None None None None Codon 278

6 T700A Tac-Aac Y234N Codon 727 None None None None

7 None None None None None None

8 None None None None NR NR

9 None None None Codon 1487 None Codon 278

10 None None None None None Codon 277

11 None Codon 727 None None None None

12 None Codon 727 None None None None

13 880delG Gag-�ag E294 fs None None None None None

14 None Codon 727 None None None Codon 277

15 None None None Codon 1487 None Codon 277

16 None None None None None None

17 None None None Codon 1487 None Codon 278

18 None Codon 727 None None None None

19 G672A gaG-gaA E224E Codon 728 None None None None

20 None Codon 727 None None None None

21 None None None None None None

aa, amino acid; NR, no result; SNP, single nucleotide polymorphism; T, tumor.
1Sequence is from GenBank entry X54156. Bold faced letters represent affected nucleotides.
2Sequence is from GenBank entry NM_000077. Bold faced letters represent affected nucleotides.
3Sequence for Ha-Ras is from GenBank entry NM_005343; sequence for Ki-Ras is from GenBank entry NM_033360; and sequence for N-Ras is from
GenBank entry AF493919.
4Base change: GC; amino-acid change: arginine-proline; database of single nucleotide polymorphisms (ds SNP; available at: http://www.ncbi.nlm.nih.gov/
SNP), Build ID: rs 1042522.
5Base change: G-A; amino-acid change: threonine to alanine; ds SNP, Build ID: rs3731249.
6Base change at Ha-Ras: T-C; amino-acid change: none; ds SNP, Build ID: rs12628.
7Heterozygous polymorphism.
8Homozygous polymorphism.
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which is responsible for sequence-specific DNA binding
(Walker and Levine, 1996). In addition, we found that nine of
21 MCCs (43%) carried a polymorphism at codon 72 (that is,
a G-C transversion), leading, as previously described
(Matlashewski et al., 1987; Thomas et al., 1999), to an
amino-acid change from arginine to proline. One of those
nine samples (tumor 19) was homozygous for this p53
polymorphism. Concerning the INK4a-ARF locus, we
detected a C-G transition in tumor 3 at codon 6 (exon 1)
(that is, a non-UV-type mutation), leading to an amino-acid
change from aspartic acid to glutamic acid in p16INK4a, but
no change in p14ARF. In addition, we found that three of 21
MCCs (14%) exhibited a common codon 148 polymorphism
(exon 2), leading to the conversion of alanine to threonine
(Lamperska et al., 2002). Although we detected no mutations
in the Ras genes, we did find that a previously described
silent codon 27 polymorphism (that is, a T-C transition)
(Hsieh et al., 1994; Kreimer-Erlacher et al., 2001) was present
in seven of 19 analyzable MCCs (37%) (two of the original 21
MCCs were not analyzable because we could not amplify
their DNA in the area surrounding codon 27) (Table 1). Of
those seven samples, three were heterozygous and four were
homozygous for this Ras polymorphism.

p14ARF promoter methylation is common in MCC

MSPCR-based analysis of 19 analyzable MCCs (for each
gene) revealed the presence of methylated DNA at the
p14ARF promoter in eight cases (42%) and at the p16INK4a
promoter in one (5%) case (Table 2). Representative
electrophoretic gels of MSPCR-amplified p14ARF and
p16INK4a are shown in Figures 2 and 3. However, all
samples containing methylated DNA were also shown to
contain unmethylated DNA. (This allowed several possible
and alternative inferences to be made about the tumor cell
populations, that is, that they were only partially methylated,
genetically diverse, methylated but in a non-biallelic manner,
or contaminated by (umethylated) normal tissue cells; Brown
et al., 2004.) In four cases, the DNA for promoters p14ARF
(tumors 7 and 15) and p16INK4a (tumors 8 and 12) could not
be amplified enough to determine their methylation status,

and therefore was not included in the determination of gene
methylation rates.

To correlate p16INK4a and p14ARF DNA methylation
status with protein expression status, we performed an
immunohistochemical analysis. Representative photographs
of cells stained to detect p16INK4a and p14ARF are shown in
Figure 4, and a summary of the results is shown in Table 2.
All 21 MCC samples showed p16INK4a staining and in most
cases a high percentage of positive nuclei. Fourteen of the
samples were also analyzable for p14ARF expression. Of
those, only six (43%) showed p14ARF expression. More
importantly, patchy staining (that is, p14ARF-positive cells
interspersed among p14ARF-negative cells) was observed in
those MCC samples, in particular being tumors 8, 11, and 17.
Because of initial difficulties in establishing the p14ARF
staining procedure and consumption of tissue, we were
ultimately unable in seven cases to gather enough tissue for
the staining of p14ARF and analysis of its expression.

DISCUSSION
In this study, we found that promoter hypermethylation of the
INK4a-ARF locus was common in MCC. MSPCR analysis
revealed the presence of methylated DNA at the p14ARF
promoter in eight (42%) and p16INK4a promoter in one (5%)
of 19 analyzable MCC samples (Figures 2 and 3; Table 2).
This observation sheds important light on the pathogenesis of
MCC because DNA methylation in promoter regions helps to
regulate the gene silencing and expression, which occurs
during the pathogenesis of many cancers including MCC. In
particular, hypermethylation of CpG islands located in the
promoter regions of tumor-suppressor genes such as
p16INK4a, BRCA1, and hMLH is now established as an
important mechanism of gene inactivation in cancer (Jones
and Baylin, 2002; Esteller, 2005). The INK4a-ARF locus
encodes two protein products (p16INK4a and p14ARF) that
originate from identical exons 2 and 3 but different exon 1
(exon 1 is termed exon 1a in the case of p16INK4a and exon
1b in the case of p14ARF), and whose respective mRNAs are
generated from separate promoters. Nonetheless, both
proteins are so crucial to regulation of the cell cycle (Serrano

Figure 1. p53 DNA sequencing results. Upper panels show electropherograms of MCCs that exhibited mutations: (a) tumor 6 (b) tumor 13, and (c) tumor 19.

Lower panels show the electropherograms of corresponding tumor-adjacent normal skin (wild-type DNA). Arrows indicate (a) a homozygous T:A-A:A

transversion in tumor 6 (exon 7, codon 234), (b) a homozygous deletion of G in tumor 13 (exon 8, codon 294), and (c) a heterozygous G:C-A:T transition

(that is, UV-type mutation) in tumor 19 (exon 6, codon 224). Note that the letter R in the labelling of the electropherogram indicates the presence of both

G and A in the DNA sequence.
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et al., 1993; Brown et al., 2004) that the functional loss
of either one may lead to the unrestrained cell cycling
and uncontrolled cell growth that is characteristic of
the carcinogenic process. Several studies have also shown
that methylated CpG sites are more sensitive to UV
light (Tommasi et al., 1997; Ikehata and Ono, 2006)
and benzo[a]pyrene (Denissenko et al., 1997; Chen
et al., 1998), possibly because their DNA repair
mechanisms are more convoluted and impaired (Denissenko
et al., 1997).

The methylation status of the INK4a-ARF locus may vary
depending on tumor type, and different tumor types may
have specific hypermethylation patterns (Iida et al., 2000;
Kawakami et al., 2000; Kang et al., 2001; To et al., 2002;
Brown et al., 2004; Ishida et al., 2005; Inda et al., 2006). Our
present observations of frequent p14ARF promoter hyper-
methylation and rare p16INK4a promoter hypermethylation
are consistent with previous studies of colorectal carcinomas
(Esteller et al., 2000) and cutaneous SCCs (Brown et al.,
2004), indicating that these two promoters can be methylated
independently. In their study of colorectal carcinomas,
Esteller et al. (2000) found simultaneous absence of
methylation in both promoters in approximately half of the
cases, but after this, p16INK4a methylated alone, p14ARF
methylated alone, and both methylated at similar rates.
Importantly, p15INK4b (which is located a mere 14 kb
upstream of p14ARF) was not found to be methylated at all.

Table 2. Results of immunohistochemical staining of
p16INK4a/p14ARF and MSPCR analysis of INK4a-ARF
locus

p16INK4a p14ARF

Tumor

Immuno-

positivity1

Promoter

methylation

status2
Immuno-

positivity1

Promoter

methylation

status2

1 +++3 � ++++3 �

2 ++++ � ++++ �

3 ++++ � NA ±

4 ++++ � � ±

5 ++++ � NA �

6 +++ � � ±

7 ++++ � � NR

8 ++++ NR +++ �

9 ++ � � �

10 ++++ � � �

11 ++++ � ++ ±

12 ++++ NR ++++ ±

13 ++++ � NA ±

14 ++++ � � ±

15 + � NA NR

16 ++++ ± � �

17 ++++ � +++ ±

18 ++++ � NA �

19 ++++ � NA �

20 ++++ � NA �

21 ++ � � �

All �, 0 �, 18 �, 8 �, 11

+, 1 ±, 1 +, 0 ±, 8

++, 2 NR, 2 ++, 1 NR, 2

+++, 2 +++, 2

++++, 16 ++++, 3

NA, 7

NA, not analyzed; NR, no result; MSPCR, methylation-specific PCR.
1Nuclear positivity on immunohistochemical staining.
2�, unmethylated; ±, methylated and unmethylated; +, methylated.
3Percentage of nuclei positive: –, none; +, 0–10 %; ++, 11–40%; +++,
41–70%; ++++, 71–100%.
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Figure 2. MSPCR analysis of p14ARF promoter region. Shown are

representative MSPCR results from (a) tumors 1–6 (1T–6T) and (b)

corresponding tumor-adjacent normal skin samples (1N–6N). Extracts were

amplified by primers specific for methylated (m) or unmethylated (u) DNA,

leading to fragment sizes of 122 bp (m) and 132 bp (u), respectively. CpG

universally methylated DNA (m-DNA) and unmethylated DNA (u-DNA) were

used to control for the specificity of MSPCR. NT, normal tissue DNA obtained

from extraction of placental tissue. Note that the samples from tumors 1, 2,

and 5 (1T, 2T, and 5T) contained only unmethylated, whereas those from

tumors 3, 4, and 6 (3T, 4T, and 6T) contained both methylated and

unmethylated DNA. Corresponding tumor-adjacent tissues and NT contained

only unmethylated DNA.
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Figure 3. MSPCR of p16INK4a promoter region. Shown are representative

results from (a) tumors 16–19 (16T–19T) and (b) corresponding tumor-adjacent

normal skin samples (16N–19N). Extracts were amplified by primers specific

for methylated (m) or unmethylated (u) DNA, leading to fragment sizes of

145 bp (m) and 154 bp (u), respectively. CpG universally methylated DNA

(m-DNA) and unmethylated DNA (u-DNA) were used to control for the

specificity of MSPCR. NT, normal tissue DNA obtained from extraction

of placental tissue. H20 served as negative control. Note that tumors 17–19

(17T–19T) contained only unmethylated, whereas tumor 16 (16T) contained

both methylated and unmethylated DNA. The corresponding tumor-adjacent

tissue and NT showed only unmethylated DNA.
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In their study of cutaneous SCCs, Brown et al. (2004) noted
p16INK4a and p14ARF promoter hypermethylation in 36%
(13 of 36) and 42% (16 of 38) of cases, respectively. They also
noted that in their tumor sample set, hypermethylation of
both promoters was much less frequent than the presence
together of hypermethylated p16INK4a and unmethylated
p14ARF, or unmethylated p16INK4a and hypermethylated
p14ARF (10 vs 70 vs 75%, respectively). In contrast,
hypermethylation of both promoters appears to occur much
more frequently in oral SCCs (Ishida et al., 2005) and breast
cancers (Silva et al., 2003).

Our immunohistochemical analysis did reveal a good
correlation between INK4a-ARF promoter methylation status
and the expression of p16INK4a but not p14ARF protein
(Table 2). All MCC samples showed p16INK4a positivity, but
only one (tumor 16) exhibited promoter methylation. Con-
cerning p14ARF, immunohistochemical results from six of
eight promotor-methylated and seven of 11 promotor-
unmethylated MCC samples were available for comparative
correlation. In the six MCC samples that exhibited p14ARF
promoter hypermethylation, p14ARF protein expression was
detected in three of samples (tumors 11, 12, and 17), but not
in the other three samples (tumors 4, 6, and 14). One possible
explanation for this discrepancy is that both methylated and
unmethylated DNA were present in those cases. On the other
hand, in the seven MCC samples in which the p14ARF
promoter was unmethylated, p14ARF protein expression was
detected as expected in three samples (tumors 1, 2, and 8) but
was unexpectedly undetectable in the remaining four
samples (tumors 9, 10, 16, and 21). Our findings of patchy
p14ARF staining and the mixture of positively and negatively
stained cells within the MCCs that we examined are

consistent with similar observations made in cutaneous SCCs
(Brown et al., 2004). In any case, this heterogenous
immunohistochemical p14ARF staining is consistent with
our ability to detect additional unmethylated DNA in any of
the promoter-methylated samples (Table 2; Figure 2).

Regarding the mutational status of the INK4a-ARF locus in
the 21 MCC samples, we observed only one missense
mutation (5%) in codon 6 of exon 1 (the affected protein
was p16INK4a), and three instances (14%) of polymorphism
at codon 148 of exon 2. This observed prevalence of codon
148 polymorphism, a base change that results in the
conversion of alanine to threonine and also happens to be
the most frequently reported polymorphism in the INK4a-ARF
gene (Lamperska et al., 2002), was consistent with previous
estimates of 12–14% (Fargnoli et al., 1998; Holland et al.,
1999).

As indicated by previous studies of the regulatory role of
the INK4a-ARF locus in p14ARF/p53 signaling pathways, p53
mutations may be rarer in tumors in which this locus is
inactivated than in tumors that express wild-type INK4a-ARF
(Pomerantz et al., 1998). This would be consistent with the
low rate of p53 mutation and high rate of p14ARF
hypermethylation that we observed in this study. However,
43% (9 of 21) of the MCCs we analyzed also exhibited a
previously described polymorphism at codon 72 of the p53
gene (G-C transversion) (Matlashewski et al., 1987; Thomas
et al., 1999). This p53 polymorphism, which lies in a region
critical for apoptotic signalling, leads to an amino-acid
change from arginine to proline, which alters the biochemi-
cal and functional properties of the p53 protein (Matlashewski
et al., 1987; Thomas et al., 1999).

Whether this polymorphic alteration has consequences for
skin cancer tumorigenesis, however, remains a controversial
issue (McGregor et al., 2002; Chen et al., 2003; Manson
et al., 2004). Although our present findings are limited by the
lack of a control population and so do not allow us to draw
any definite conclusions, we can conclude in light of these
other studies that MCC risk is probably not influenced by the
prevalence of the p53 codon 72 polymorphism.

No Ha-, Ki-, or N-Ras mutations were detected in our
study, even at codons 12, 13, and 61, where functionally
relevant mutations often do occur (Popp et al., 2002). These
results confirm and extend the work of Popp et al. (2002),
who detected no Ras mutations in six MCC cell lines.
However, in over a third of the MCCs (37% (7 of 19)) that we
examined in this study, we detected a silent polymorphism
(that is, a T-C transition in codon 27 of the Ha-Ras gene)
that has been previously described and implicated in skin
cancer development by others (Hsieh et al., 1994; Kreimer-
Erlacher et al., 2001). Although it was difficult until very
recently to understand how a silent (synonymous) gene
polymorphism might increase tumor risk, work by Kimchi-
Sarfaty et al. (2007) suggests how this might occur. In brief,
they have demonstrated that the shape of a protein is
determined by more than just its amino-acid sequence and
that a single-nucleotide polymorphism may result in a
different protein conformation. This might occur via the
effect of a single-nucleotide polymorphism on mRNA folding,

a b

c d

Figure 4. p16INK4a and p14ARF immunohistochemical staining. (a, b)

Shown are representative results of p16INK4a staining of tumors 20 (a) and 15

(b). Note that p16INK4a nuclear immunopositivity was present in the majority

of tumor cells in tumor 20, but was totally absent from this field of tumor 15.

(c, d) Shown are representative results of p14ARF staining of tumors 2 (c) and

4 (d). Note that p14ARF nuclear immunopositivity was present in the majority

of tumor cells in tumor 2, but only in a few cells in tumor 4. Sections were

counterstained with hematoxylin. Bar¼ 0.1 mm.
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which in turn might affect the rate of mRNA translation and
subsequent protein folding.

The two cell-cycle control pathways targeted most
frequently during tumorigenesis are the pRB (pRb/
p16INK4a/cyclin D1) and p53 (p14ARF/mdm2/p53) path-
ways, although the alterations in each pathway depend on
tumor type. In the case of MCC, alterations in the p53
pathway appear to be most crucial, as suggested by the high
frequency of p14ARF promoter methylation and low
frequency of p16INK4a promoter methylation in our study.
Consequently, this pathway might be targeted epigenetically
with demethylating agents such as 5-aza-2/deoxycytidine
(Carr et al., 2006) or DNA methylation inhibitors such as
zebularine [1-(beta-D-ribofuranosyl)-1,2-dihydropyrimidin-2-
one] (Yoo et al., 2004). For instance, preclinical work by Carr
et al. (2006) has shown that mRNA expression of p14ARF
could be restored in methylated neuroblastoma cells
(GIMEN) following treatment with 5-aza-2/deoxycytidine. In
experimental studies involving transplantation of human
bladder cancer cells into nude mice, Cheng et al. (2004)
demonstrated that continuous administration of zebularine
not only maintained p16 gene expression, sustained de-
methylation, and prevented remethylation, but also induced
global demethylation of various hypermethylated regions in
the cells. In fact, therapeutically targeting methylation in
MCC might be a much more efficacious strategy than
targeting, for instance, the c-Kit tyrosine kinase pathway with
kinase inhibitors such as imatinib mesylate. This is especially
so in light of our inability to detect any (activating) c-Kit exon
11 mutations in MCC and recent work by Swick et al. (2007).

MATERIALS AND METHODS
Patients and tumors

Paraffin-embedded tissue samples of 21 primary MCCs archived at

our institution were available for analysis. In all cases, the diagnoses

were confirmed by immunohistochemical staining for neuroendo-

crine markers, such as neuron-specific enolase or chromogranin A,

and/or cytokeratin 20. The MCCs were obtained from an elderly and

predominantly female population of 21 patients (19 women, 2 men;

mean age (range) at diagnosis, 78.5 (65–91) years). Lesion sites in

these cases were the head (n¼ 12), trunk (n¼ 2), arm (n¼ 4), leg

(n¼ 2), and an unknown lesion site (n¼ 1). The study protocol

(application number 18–139 ex 06/07) was approved by the local

Ethical Committee at the Medical University of Graz, Austria, and

was conducted according to the Declaration of Helsinki Principles.

All patients who were alive at the time of our study, provided

informed consent to DNA analysis of the MCC samples.

DNA extraction

Six-micrometer-thick sections were cut from formalin-fixed, paraffin-

embedded tissue samples and mounted on slides. Next, the slide-

mounted sections were deparaffinized by incubation in xylene for

10 minutes and in ethanol (100%) for another 10 minutes, and then

air-dried. All samples were manually dissected to minimize non-

tumor cell content. Next, each tissue sample was scraped off its

slide, suspended in 200ml of a lysis solution containing 0.1 M Tris-

HCl (pH 8) and 1mgml�1 proteinase K, incubated for at least 48 hours

at 56 1C, boiled for 10 minutes, purified using a QIAmp DNA Mini

Kit (Qiagen, Vienna, Austria), and finally stored at �20 1C until

analysis.

PCR
The template DNA for PCR consisted of approximately 50 ng of

tumor DNA in a 50-ml solution containing PCR-10� buffer (100 mM

Tris-HCl, (pH 8.3), 500 mM KCl), 1.5 mM MgCl2, 200mM of each

deoxyribonucleoside triphosphate, 15 pmol (300 nM) of the upstream

and downstream primers for the respective exons, and 2.5 U of

AmpliTaq Gold Polymerase (Applied Biosystems, Vienna, Austria).

The following PCR primer sequences were used: c-Kit, as described

by Lasota et al. (1999) (2003); p53, INK4a-ARF, and Ha-Ras (exon 2)

as designed by us (Kreimer-Erlacher et al., 2001, 2003; Seidl et al.,

2001; Wolf et al., 2004), Ha-Ras (exon 1) forward primer, as

described by Albino et al. (1989), and reverse primer, as described

by Popp et al. (2002); and N-Ras exon 1 reverse primer and N-Ras

exon 2 forward primer, as described by Albino et al. (1989). The Ki-

Ras exons 1 and 2, N-Ras exon 1 forward, and N-Ras exon 2 reverse

primers (Table 3) were designed by us.

All reaction mixtures were subjected to 40 cycles of amplification

in a thermocycler (MyCycler, Vienna, Austria). Before the first cycle,

tubes containing PCR mixtures were incubated for either 12 minutes

at 94 1C (p53 exons 4–8; Ha-, Ki-, and N-Ras exons 1 and 2; and c-Kit

exon 11) or 15 minutes at 95 1C (INK4a-ARF exons 1 and 2). Each

cycle consisted of denaturation at either 94 1C for 45 seconds (p53;

Ha-, Ki-, and N-Ras; and c-Kit) or 95 1C for 30 seconds (INK4a-ARF).

Annealing was performed at either 60 1C for 30 seconds (p53; Ha-,

Ki-, and N-Ras; and c-Kit) or 57 1C for 30 seconds (INK4a-ARF).

Polymerization was performed at either 72 1C for 30 seconds (p53;

Ha-, Ki-, and N-Ras; and c-Kit) or 72 1C for 60 seconds (INK4a-ARF).

After the last amplification cycle, PCR mixtures were incubated for

either 7 minutes at 72 1C (p53, Ha-, Ki-, and N-Ras; and c-Kit) or

10 minutes at 72 1C (INK4a-ARF). Tubes containing no template

DNA were included in each PCR run as negative controls for

potential contamination. All amplification products were then

purified by gel electrophoresis on a 2.5% MetaPhor gel (Cambrex,

Rockland, ME) and subsequent gel extraction (Wizard SV Gel and

PCR clean-up system; Promega, Mannheim, Germany).

Table 3. Self-designed primer sequences for PCR and
sequencing

Gene Amplified region 50-30

Ki-Ras1 Exon 1 (codon 12/13)

forward

ATTATAAGGCCTGCTGAAAATG

Ki-Ras1 Exon 1 (codon 12/13)

reverse

TGAAAATGGTCAGAGAAACC

Ki-Ras1 Exon 2 (codon 61)

forward

TCAGGTGCTTAGTGGCCATTT

Ki-Ras1 Exon 2 (codon 61)

reverse

CAAAGAAAGCCCTCCCCAGTCCT

N-Ras2 Exon 1 (codon 12/13)

forward

CAGGTTCTTGCTGGTGTGAAA

N-Ras2 Exon 2 (codon 61)

reverse

CACAAAGATCATCCTTTCAGA

1Sequence is from GenBank entry NM_033360.
2Sequence is from GenBank entry AF493919.
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DNA sequencing
Thirty nanograms of each tumor’s DNA were amplified by reaction

with 3.2 pmol (160 nM) of primer for the different exons of the

specific genes and sequencing reagents (Big Dye Terminator v1.1

Cycle Sequencing KIT; Applied Biosystems). The amplification

products were then purified on spin post-reaction clean-up plates

(Sigma-Aldrich, Vienna, Austria), and analyzed in an ABI 3130

genetic analyzer (Applied Biosystems). In each case, DNA from

normal tissue was simultaneously analyzed to rule out PCR-

generated mutations. Direct DNA sequencing was performed at

least twice per tumor sample, and the presence of a mutation was

always confirmed by sequencing the opposite DNA strand.

Sequence analysis was done on a personal computer programmed

with sequence analysis software (SeqScape; Applied Biosystems).

The primers used for sequencing were identical to those described

above for PCR.

MSPCR

MSPCR analysis was carried out, essentially, as described previously

(Herman et al., 1996). The method is based on the principle that

treating DNA with sodium bisulfite results in the conversion of

unmethylated cytosine residues into uracil. After such treatment, the

sequence of originally methylated DNA will differ from that of

originally unmethylated DNA and will then be distinguishable by

sequence-specific PCR primers. Bisulfite modification of tissue DNA

was conducted with the EpiTect Bisulfite KIT (Qiagen). To analyze

the methylation status of both p16INK4a and p14ARF gene promoter

regions, MSPCR was carried out using separate reaction mixtures

containing primers specific for unmethylated and methylated DNA,

respectively. For both p16INK4a and p14ARF MSPCR, bisulfite-

modified universally methylated or unmethylated DNA (Chemicon

International, Hampshire, United Kingdom) was always used as a

positive control and distilled water as a negative control. p16INK4a

MSPCRs were conducted using the CpGWIZ p16 Amplification Kit

(Chemicon International) and Hot StaR Taq DNA polymerase

(Qiagen).

All reaction mixtures were subjected to 40 cycles of amplification

in a thermocycler as follows: an initial denaturation step of 95 1C for

15 minutes; repeated cycles of 95 1C for 45 seconds, 60 1C for

45 seconds, and 72 1C for 60 seconds; and a final extension step of

72 1C for 7 minutes. Bisulfite-treated DNA was amplified by reaction

with primers specific for the methylated p14ARF sequence and the

unmethylated p14ARF sequence, as previously described by Esteller

et al. (2000), using Hot StaR Taq DNA-Polymerase (Qiagen). Again,

all reaction mixtures were subjected to 40 cycles of amplification in

a thermocycler as follows: an initial denaturation step of 95 1C for

15 minutes; repeated cycles of 95 1C for 45 seconds, 55 1C for

45 seconds, and 72 1C for 60 seconds; and a final extension step of

72 1C for 7 minutes. All PCR products were analyzed by agarose gel

electrophoresis and ethidium bromide staining.

Immunohistochemical staining

Four-micrometer-thick, slide-mounted tissue sections were depar-

affinized in xylene and rehydrated in water. The slides were stored in

a warming cupboard overnight at 80 1C. Immunohistochemical

staining of p16INK4a was performed with a TechMate Horizon

apparatus (DakoCytomation autostainer; DAKO, Vienna, Austria)

according to the manufacturer’s protocol (www.DakoCytomation.

com), using a murine anti-human p16INK4a concentrate (DAKO) and

biotinylated goat anti-mouse serum (DAKO) for detection. Negative

control reagent (containing monoclonal mouse IgG2a antibody to

Aspergillus niger glucose oxidase, an enzyme neither present nor

inducible in mammalian tissue) (DAKO) was used instead of the

primary antibody to exclude nonspecific p16INK4a staining.

Immunohistochemical staining of p14ARF was performed as

previously described (Brown et al., 2004), except that antigens were

retrieved by boiling in 10 mM citrate buffer (pH 6) for 13 minutes in a

microwave oven (750 watts). Rabbit anti-human p14ARF antibody

(p14ARF/p16b Ab-4; Lab Vision, Vienna, Austria) and biotinylated

goat anti-rabbit serum (DAKO) were used for detection. Rabbit IgG

(Sigma-Aldrich) was used instead of primary antibody to exclude

nonspecific p14ARF staining. Reactions were developed using 3,30-

diaminobenzidine solution (DAKO) in the case of p16INK4a and

AEC Chromogen (DAKO) in the case of p14ARF. Slides were

counterstained with hematoxylin. Since both p14ARF and p16INK4a

are nuclear proteins, only nuclear reactivity was considered a

positive sign of protein expression. Internal positive controls

included basal keratinocytes for p16INK4a and hair follicles and

glandular structures for p14ARF. All immunohistochemical stainings

were scored by two of the investigators (A Lassacher and P Wolf).
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