121 research outputs found
Model study of adsorbed metallic quantum dots: Na on Cu(111)
We model electronic properties of the second monolayer Na adatom islands
(quantum dots) on the Cu(111) surface covered homogeneously by the first Na
monolayer. An axially-symmetric three-dimensional jellium model, taking into
account the effects due to the first Na monolayer and the Cu substrate, has
been developed. The electronic structure is solved within the local-density
approximation of the density-functional theory using a real-space multigrid
method. The model enables the study of systems consisting of thousands of
Na-atoms. The results for the local density of states are compared with
differential conductance () spectra and constant current topographs from
Scanning Tunneling Microscopy.Comment: 10 pages, 8 figures. For better quality figures, download
http://www.fyslab.hut.fi/~tto/cylart1.pd
Ellipsoidal area mean gravity anomalies - precise computation of gravity anomaly reference fields for remove-compute-restore geoid determination
Gravity anomaly reference fields, required e.g. in remove-compute-restore (RCR) geoid computation, are obtained from global geopotential models (GGM) through harmonic synthesis. Usually, the gravity anomalies are computed as point values or area mean values in spherical approximation, or point values in ellipsoidal approximation. The present study proposes a method for computation of area mean gravity anomalies in ellipsoidal approximation ('ellipsoidal area means') by applying a simple ellipsoidal correction to area means in spherical approximation. Ellipsoidal area means offer better consistency with GGM quasi/geoid heights. The method is numerically validated with ellipsoidal area mean gravity derived from very fine grids of gravity point values in ellipsoidal approximation. Signal strengths of (i) the ellipsoidal effect (i.e., difference ellipsoidal vs. spherical approximation), (ii) the area mean effect (i.e., difference area mean vs. point gravity) and (iii) the ellipsoidal area mean effect (i.e., differences between ellipsoidal area means and point gravity in spherical approximation) are investigated in test areas in New Zealand and the Himalaya mountains. The impact of both the area mean and the ellipsoidal effect on quasigeoid heights is in the order of several centimetres. The proposed new gravity data type not only allows more accurate RCR-based geoid computation, but may also be of some value for the GGM validation using terrestrial gravity anomalies that are available as area mean values
Closed-Form transformation between geodetic and ellipsoidal coordinates
We present formulas for direct closed-form transformation between geodetic coordinates(Φ, λ, h) and ellipsoidal coordinates (β, λ, u) for any oblate ellipsoid of revolution.These will be useful for those dealing with ellipsoidal representations of the Earth's gravityfield or other oblate ellipsoidal figures. The numerical stability of the transformations for nearpolarand near-equatorial regions is also considered
- …