4 research outputs found
Analysis of indoor air emissions : From building materials to biogenic and anthropogenic activities
Publisher Copyright: © 2022 The AuthorsThere is a clear relationship between indoor air quality, gaseous compounds (volatile and semi-volatile) and particles emitted by building materials, biogenic and anthropogenic activities, and human health. An increased interest in indoor air quality and emissions has raised during recent years. Nowadays, it is possible to find several analytical approaches based on a wide variety of sampling and analytical techniques. The main objective of this review is to clarify the different options available for the analyst by a critical evaluation of the different steps involved in these methods. In this way, a clear description and evaluation of the potential advantages and shortcomings for the different devices required in materials emission studies, the collection of total air samples using air canisters and particles by vacuum surface have been included in this review. In addition, the potential use of active and passive sampling techniques, for the efficient collection of different compounds from the air samples is described. Then, the selection of the most adequate analytical approach for the analysis of different compounds as a function of their physicochemical properties is evaluated. The latter will include not only traditional approaches such as gas or liquid chromatography but also more sophisticated ones such as proton transfer reaction or chemical ionization mass spectrometry. Finally, the application of these different analytical approaches to the evaluation of indoor air emissions, mainly from biogenic and anthropogenic activities but also from different building materials, are introduced.Peer reviewe
Aerial drone furnished with miniaturized versatile air sampling systems for selective collection of nitrogen containing compounds in boreal forest
A wide variety of nitrogen-containing compounds are present in the environment, which contributes to air pollution and new particle formation, for example. These eventually affect human health and the climate. With all this consideration, there is a growing interest in the development of efficient and reliable methods to determine these compounds in the atmosphere. In this study, titanium hydrogen phosphate-modified Mobil Composition of Matter No. 41 was used as sorbent material for in-tube extraction (ITEX) sampling system, to selectively collect nitrogen-containing compounds from natural air samples. The effect of sampling accessories, based on adsorbent coatings (with Tenax-GR as an adsorbent material) and polytetrafluoroethylene filters, was studied to improve the selectivity of the sampling system and to remove particles. Aerial drone with miniaturized air sampling system was employed for the reliable collection of nitrogen-containing compounds in both gas phase and aerosol particles. A total of 170 air samples were collected in July 2020 at the SMEAR II station, Finland to evaluate nitrogen-containing compounds diurnal patterns and vertical profiles (0.25, 5, 50, and 150 m). More than twenty nitrogen-containing compounds, such as aliphatic amines, imines, imidazoles, and pyridines, were identified, quantified or semi-quantified. The average concentrations of detected aliphatic amines at the altitude of 50 m were up to 40.4 ng m−3 (dimethylamine) in gas phase and 128 ng m−3 (ethylamine) in aerosol particles. Among nitrogen-containing compounds detected, pyridine gave the highest average concentration of 746 ng m−3 in gas phase and 644 ng m−3 in particle phase.Peer reviewe
Analysis of volatile organic compounds emitted from indoor building materials
Interest towards indoor air quality has increased for several decades from human health perspective. In order to evaluate the quality of indoor air in terms of volatile organic compound (VOC) levels, robust analytical procedures and techniques must be used for indoor air VOC measurements. Since indoor building materials are the greatest source of indoor VOC emissions, same kind of procedures must be used for analysis of emission rates from building materials and their surfaces.
Theory part of this thesis reviews background of VOCs and human health, legislation and guideline values, common building materials with emissions and used sampling techniques/approaches for indoor air sampling and surface material emission rate sampling & analysis. Discussed sampling techniques include, for example, material emission test chambers, field and laboratory test emission cells, solid phase microextraction (SPME) fibre applications and Radiello passive samplers. Also new innovative approaches are discussed. Used common analysis instruments are Gas Chromatography (GC) with Mass Spectrometer (MS) or Flame Ionization Detector (FID) for VOCs and High-Performance Liquid Chromatography-Ultraviolet/Visible light detector (HPLC-UV/VIS) for carbonyl VOCs (e.g. formaldehyde) after suitable derivatization. Analytical procedures remain highly ISO 16000 standard series orientated even in recent studies. In addition, potential usage of new modern miniaturized sample collection devices SPME Arrow and In-tube extraction (ITEX) used in experimental part of this thesis are discussed as an addition to indoor air and VOC emission studies.
The aim of the experimental part of this thesis was to develop calibrations for selected organic nitrogen compounds with SPME Arrow and ITEX sampling techniques and test the calibration with indoor and outdoor samples. A calibration was successfully carried out with SPME Arrow (MCM-41 sorbent), ITEX (MCM-TP sorbent) and ITEX (Polyacrylonitrile (PAN) 10 % sorbent) with permeation system combined with GC-MS for the following selected organic nitrogen compounds: triethylamine, pyridine, isobutyl amine, allylamine, trimethylamine, ethylenediamine, dipropyl amine, hexylamine, 1,3-diaminopropane, 1-methyl-imidazole, N, N-dimethylformamide, 1,2-diaminocyclohexane, 1-nitropropane and formamide. The overall quality of the calibration curves was evaluated, and the calibrations were compared in terms of linear range, relative standard deviation (RSD) % for accepted calibration levels and obtained Limits of Detection (LOD) values. Also, ways to improve the calibrations were discussed. The calibration curves were tested with real indoor and outdoor samples and quantitative, as well as semi-quantitative, results were obtained