24 research outputs found
Pioneering Construction Materials through Prototypological Research
The article at hand follows the understanding that future cities cannot be built the same way as existing ones, inducing a radical paradigm shift in how we produce and use materials for the construction of our habitat in the 21st century. In search of a methodology for an integrated, holistic, and interdisciplinary development of such new materials and construction technologies, the chair of Sustainable Construction at KIT Karlsruhe proposes the concept of “prototypological” research. Coined through joining the terms “prototype” and “typology”, prototypology represents a full-scale application, that is an experiment and proof in itself to effectively and holistically discover all connected aspects and address unknowns of a specific question, yet at the same time is part of a bigger and systematic test series of such different typologies with similar characteristics, yet varying parameters. The second part of the article applies this method to the research on mycelium-bound building materials, and specifically to the four prototypologies MycoTree, UMAR, Rumah Tambah, and Futurium. The conclusion aims to place the results into the bigger research context, calling for a new type of architectural research
Towards Urban Mining—Estimating the Potential Environmental Benefits by Applying an Alternative Construction Practice. A Case Study from Switzerland
Modern cities emerged as the main accumulator for primary and waste materials. Recovery of both types from buildings after demolition/disassembly creates a secondary material stream that could relieve pressure from primary resources. Urban mining represents this circular approach, and its application depends on redefining current construction practice. Through the life cycle assessment (LCA) methodology and assuming primary resources as step zero of urban mining, this study estimates the impacts and benefits of conventional versus a circular construction practice applied to various buildings with different parameters and the country-level environmental potential savings that could be achieved through this switch in construction practice—using the increase of the residential building stock in Switzerland between 2012 and 2016 as a case study and key values from the experimental unit “Urban Mining and Recycling”, designed by Werner Sobek with Dirk E. Hebel and Felix Heisel and installed inside the NEST (Next Evolution in Sustainable Building Technologies) research building on the Empa campus in Switzerland. The results exhibit lower total impacts (at least 16% in each examined impact category) at building level and resulting benefits (i.e., 68–117 kt CO-Eq) at country level over five years, which can be further reduced/increased respectively by using existing or recycled components, instead of virgin materials
Environmental assessment of the Urban Mining and Recycling (UMAR) unit by applying the LCA framework
Constructing Habitat: Discussing the establishment of ‘alternative modern’ neighbourhoods
ISSN:2339-542