23 research outputs found
Fundamental Solutions and Green's Functions for certain Elliptic Differential Operators from a Pseudo-Differential Algebra
We have studied possible applications of a particular pseudo-differential
algebra in singular analysis for the construction of fundamental solutions and
Green's functions of a certain class of elliptic partial differential
operators. The pseudo-differential algebra considered in the present work,
comprises degenerate partial differential operators on stretched cones which
can be locally described as Fuchs type differential operators in appropriate
polar coordinates. We present a general approach for the explicit construction
of their parametrices, which is based on the concept of an asymptotic
parametrix, introduced in \cite{FHS16}. For some selected partial differential
operators, we demonstrate the feasibility of our approach by an explicit
calculation of fundamental solutions and Green's functions from the
corresponding parametrices. In our approach, the Green's functions are given in
separable form, which generalizes the Laplace expansion of the Green's function
of the Laplace operator in three dimensions. As a concrete application in
quantum scattering theory, we construct a fundamental solution of a
single-particle Hamilton operator with singular Coulomb potential
Singular analysis and coupled cluster theory
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to short-range correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation
Singular analysis and coupled cluster theory
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to short-range correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation
Bridging the gap between quantum Monte Carlo and F12-methods
Abstract Tensor product approximation of pair-correlation functions opens a new route from quantum Monte Carlo (QMC) to explicitly correlated F12 methods. Thereby one benefits from stochastic optimization techniques used in QMC to get optimal pair-correlation functions which typically recover more than 85 % of the total correlation energy. Our approach incorporates, in particular, core and core-valence correlation which are poorly described by homogeneous and isotropic ansatz functions usually applied in F12 calculations. We demonstrate the performance of the tensor product approximation by applications to atoms and small molecules. It turns out that the canonical tensor format is especially suitable for the efficient computation of two-and three-electron integrals required by explicitly correlated methods. The algorithm uses a decomposition of three-electron integrals, originally introduced by Boys and Handy and further elaborated by Ten-no in his 3d numerical quadrature scheme, which enables efficient computations in the tensor format. Furthermore, our method includes the adaptive wavelet approximation of tensor components where convergence rates are given in the framework of best N -term approximation theory
Wavelet approximation of correlated wavefunctions. II. Hyperbolic wavelets and adaptive approximation schemes
We have studied various aspects concerning the use of hyperbolic wavelets and adaptive approximation schemes for wavelet expansions of correlated wavefunctions. In order to analyze the consequences of reduced regularity of the wavefunction at the electron-electron cusp, we first considered a realistic exactly solvable many-particle model in one dimension. Convergence rates of wavelet expansions, with respect to L2 and H1 norms and the energy, were established for this model. We compare the performance of hyperbolic wavelets and their extensions through adaptive refinement in the cusp region, to a fully adaptive treatment based on the energy contribution of individual wavelets. Although hyperbolic wavelets show an inferior convergence behavior, they can be easily refined in the cusp region yielding an optimal convergence rate for the energy. Preliminary results for the helium atom are presented, which demonstrate the transferability of our observations to more realistic systems. We propose a contraction scheme for wavelets in the cusp region, which reduces the number of degrees of freedom and yields a favorable cost to benefit ratio for the evaluation of matrix elements