24 research outputs found

    Editorial: Whole-body electromyostimulation: A training technology to improve health and performance in humans? volume II

    Get PDF
    Editorial on the Research Topic Whole-body electromyostimulation: A training technology to improve health and performance in humans? volume I

    Effect of Segment-Body Vibration on Strength Parameters

    Get PDF
    Background In this study, we examine the biomechanical advantage of combining localized vibrations to hamstring muscles involved in a traditional resistance training routine. Methods Thirty-six male and female participants with at least 2 years of experience in resistance training were recruited from the German Sport University Cologne. The participants were randomized into two training groups: vibration training group (VG) and traditional training group (TTG). Both groups underwent a 4-week training phase, where each participant worked out at 70 % of the individual 1 repeat maximum (RM—maximum load capacity of a muscle for one lift to fatigue) (4 sets with 12 repetitions each). For participants in the VG group, local vibration was additionally applied directly to hamstring muscles during exercise. A 2-week examination phase preceded the pretests. After the pretests, the subjects underwent a prescribed training for 4 weeks. At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest. Results The measured parameters were maximum isometric force of the hamstrings and maximum range of motion and muscle tension at maximum knee angle. The study revealed a significant increase in maximum isometric force in both training groups (VG = 21 %, TTG = 14 %). However, VG groups showed an increase in their range of motion by approximately 2 %. Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %). Conclusions We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training. The cause for these findings can be attributed to the additional local vibration stimulus.NPRP award NPRP 05-086-2-031 from the Qatar National Research Fund (a member of The Qatar Foundation)

    Effects of an Eight-Week Superimposed Submaximal Dynamic Whole-Body Electromyostimulation Training on Strength and Power Parameters of the Leg Muscles: A Randomized Controlled Intervention Study

    Get PDF
    The purpose of this study was to assess the effects of dynamic superimposed submaximal whole-body electromyostimulation (WB-EMS) training on maximal strength and power parameters of the leg muscles compared with a similar dynamic training without WB-EMS. Eighteen male sport students were randomly assigned either to a WB-EMS intervention (INT; n = 9; age: 28.8 (SD: 3.0) years; body mass: 80.2 (6.6) kg; strength training experience: 4.6 (2.8) years) or a traditional strength training group (CON; n = 9; age: 22.8 (2.5) years; body mass: 77.6 (9.0) kg; strength training experience: 4.5 (2.9) years). Both training intervention programs were performed twice a week over a period of 8 weeks with the only difference that INT performed all dynamic exercises (e.g., split squats, glute-ham raises, jumps, and tappings) with superimposed WB-EMS. WB-EMS intensity was adjusted to 70% of the individual maximal tolerable pain to ensure dynamic movement. Before (PRE), after (POST) and 2 weeks after the intervention (FU), performance indices were assessed by maximal strength (Fmax) and maximal power (Pmax) testing on the leg extension (LE), leg curl (LC), and leg press (LP) machine as primary endpoints. Additionally, vertical and horizontal jumps and 30 m sprint tests were conducted as secondary endpoints at PRE, POST and FU testing. Significant time effects were observed for strength and power parameters on LE and LC (LE Fmax +5.0%; LC Pmax +13.5%). A significant time Ă— group interaction effect was merely observed for Fmax on the LE where follow-up post hoc testing showed significantly higher improvements in the INT group from PRE to POST and PRE to FU (INT: +7.7%, p < 0.01; CON: +2.1%). These findings indicate that the combination of dynamic exercises and superimposed submaximal WB-EMS seems to be effective in order to improve leg strength and power. However, in young healthy adults the effects of superimposed WB-EMS were similar to the effects of dynamic resistance training without EMS, with the only exception of a significantly greater increase in leg extension Fmax in the WB-EMS group

    Effects of Four Weeks of Static vs. Dynamic Bodyweight Exercises with Whole-Body Electromyostimulation on Jump and Strength Performance: A Two-Armed, Randomized, Controlled Trial

    Get PDF
    The combination of strength training with complementary whole-body electromyostimulation (WB-EMS) and plyometric exercises has been shown to increase strength and jumping performance in athletes. In elite sport, however, the mesocycles of training are often organized according to block periodization. Furthermore, WB-EMS is often applied onto static strength exercises, which may hamper the transfer into more sport-specific tasks. Thus, this study aimed at investigating whether four weeks of strength training with complementary dynamic vs. static WB-EMS followed by a four-week block of plyometric training increases maximal strength and jumping performance. A total of n = 26 (13 female/13 male) trained adults (20.8 ± 2.2 years, 69.5 ± 9.5kg, 9.7 ± 6.1h of training/w) were randomly assigned to a static (STA) or volume-, load- and work-to-rest-ratio-matched dynamic training group (DYN). Before (PRE), after four weeks (three times weekly) of WB-EMS training (MID) and a subsequent four-week block (twice weekly) of plyometric training (POST), maximal voluntary contraction (MVC) at leg extension (LE), leg curl (LC) and leg press machines (LP) and jumping performance (SJ, Squat Jump; CMJ, counter-movement-jump; DJ, drop-jump) were assessed. Furthermore, perceived effort (RPE) was rated for each set and subsequently averaged for each session. MVC at LP notably increased between PRE and POST in both STA (2335 ± 539 vs. 2653 ± 659N, standardized mean difference [SMD] = 0.528) and DYN (2483 ± 714N vs. 2885 ± 843N, SMD = 0.515). Reactive strength index of DJ showed significant differences between STA and DYN at MID (162.2 ± 26.4 vs. 123.1 ± 26.5 cm·s-1, p = 0.002, SMD = 1.478) and POST (166.1 ± 28.0 vs. 136.2 ± 31.7 cm·s-1, p = 0.02, SMD = 0.997). Furthermore, there was a significant effect for RPE, with STA rating perceived effort higher than DYN (6.76 ± 0.32 vs. 6.33 ± 0.47 a.u., p = 0.013, SMD = 1.058). When employing a training block of high-density WB-EMS both static and dynamic exercises lead to similar adaptations

    Position statement and updated international guideline for safe and effective whole-body electromyostimulation training-the need for common sense in WB-EMS application

    Get PDF
    Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations “for safe and effective whole-body electromyostimulation” were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) “general aspects of WB-EMS”, 2) “preparation for training”, recommendations for the 3) “WB-EMS application” itself and 4) “safety aspects during and after training”. Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant’s proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application

    Effects of a Whole-Body Electrostimulation Program on Strength, Sprinting, Jumping, and Kicking Capacity in Elite Soccer Players

    No full text
    The aim of the present study was to investigate the effect of a 14-week dynamic Whole-Body Electrostimulation (WB-EMS) training program on muscular strength, soccer relevant sprint, jump and kicking velocity performance in elite soccer players during competitive season. Twenty-two field-players were assigned to 2 groups: WB-EMS group (EG, n = 12), jump-training group (TG, n = 10). The training programs were conducted twice a week concurrent to 6-7 soccer training sessions during the 2nd half of the season. Participants were tested before (baseline), during (wk-7) and after (wk-14). Blood serum samples for analyzing IGF-1 and CK were taken before each testing, 15-30min post and 24h post the training program. Our findings of the present study were that a 14-week in-season WB-EMS program significant increased one-leg maximal strength (1RM) at the leg press machine (1.99 vs. 1.66 kg/kg, p = 0.001), and improved linear sprinting (5m: 1.01 vs. 1.04s, p=0.039), sprinting with direction changes (3.07 vs. 3.25s, p = 0.024), and vertical jumping performance (SJ: 38.8 vs. 35.9cm p = 0.021) as well as kicking velocity (1step: 93.8 vs. 83.9 km·h-1, p < 0.001). The TG showed no changes in strength and performance. The EG revealed significantly increased CK levels 24h post training and yielded significantly higher CK levels compared to the TG. IGF-1 serum levels neither changed in the EG nor in the TG. The results give first hints that two sessions of a dynamic WB-EMS training in addition to 6-7 soccer sessions per week can be effective for significantly enhancing soccer relevant performance capacities in professional players during competitive season
    corecore