11 research outputs found

    Higher Berry curvature from matrix product states

    Full text link
    The higher Berry curvature was introduced by Kapustin and Spodyneiko as an extension of the Berry curvature in quantum mechanical systems with finite degrees of freedom to quantum many-body systems in finite spatial dimensions. In this paper, we propose an alternative formulation of the higher Berry curvature using translationally invariant matrix product states. They are the ground states of a set of gapped Hamiltonians which are evolved adiabatically through a discretized parameter space. Because matrix product states transform under a projective representation, evaluating the Berry curvature on a closed loop through parameter space is not sufficient to fix all the gauge degrees of freedom. To obtain a gauge-invariant real quantity, the higher-dimensional Berry curvature is evaluated on small tetrahedra in parameter space. Our numerical calculations confirm that the higher Berry curvature varies continuously throughout an adiabatic evolution and becomes quantized over a closed 3-dimensional parameter space.Comment: Sec. V-B-2, numerical calculation for random J1 J2 adde

    Stable Bosonic Topological Edge Modes in the Presence of Many-Body Interactions

    Full text link
    Many magnetic materials are predicted to exhibit bosonic topological edge modes in their excitation spectra, because of the nontrivial topology of their magnon, triplon or other quasi-particle band structures. However, there is a discrepancy between theory prediction and experimental observation, which suggests some underlying mechanism that intrinsically suppresses the expected experimental signatures, like the thermal Hall current. Many-body interactions that are not accounted for in the non-interacting quasi-particle picture are most often identified as the reason for the absence of the topological edge modes. Here we report stable bosonic edge modes at the boundaries of a ladder quantum paramagnet with gapped triplon excitations in the presence of the full many-body interaction. For the first time, we use tensor network methods to resolve topological edge modes in the time-dependent spin-spin correlations and the dynamical structure factor, which is directly accessible experimentally. We further show that these edge modes have anomalously long time coherence, discuss the topological phase diagram of the model, demonstrate the fractionalization of its low-lying excitations, and propose potential material candidates

    Discovery of Superconductivity and Electron-Phonon Drag in the Non-Centrosymmetric Semimetal LaRhGe3_3

    Full text link
    We present a comprehensive study of the non-centrosymmetric semimetal LaRhGe3_3. Our transport measurements reveal evidence for electron-hole compensation at low temperatures, resulting in a large magnetoresistance of 3000% at 1.8 K and 14 T. The carrier concentration is on the order of 1021/cm310^{21}\rm{/cm}^3, higher than typical semimetals. We predict theoretically the existence of almost movable\textit{almost movable} Weyl nodal lines that are protected by the tetragonal space group. We discover superconductivity for the first time in this compound with a TcT_{\text c} of 0.39(1) K and Bc(0)B_{\rm{c}}(0) of 2.1(1) mT, with evidence from specific heat and transverse-field muon spin relaxation (μSR\mu \rm{SR}). LaRhGe3_3 is a weakly-coupled type-I superconductor, and we find no evidence for time-reversal symmetry breaking in our zero-field μSR\mu \rm{SR}. We study the electrical transport in the normal state and find an unusual ∼T3\sim T^{3} dependence at low temperature while Seebeck coefficient and thermal conductivity measurements reveal a peak in the same temperature range. We conclude that the transport properties of LaRhGe3_3 in its normal state are strongly influenced by electron-phonon interactions. Furthermore, we examine the temperature dependent Raman spectra of LaRhGe3_3 and find that the lifetime of the lowest energy A1A_1 phonon is dominated by phonon-electron scattering instead of anharmonic decay

    Anisotropic superconductivity in the spin-vortex antiferromagnetic superconductor CaK(Fe0.95Ni0.05)(4)As-4

    Get PDF
    High critical temperature superconductivity often occurs in systems where an antiferromagnetic order is brought near T=0 K by slightly modifying pressure or doping. CaKFe4As4 is a superconducting, stoichiometric iron-pnictide compound showing optimal superconducting critical temperature with Tc as large as 35 K. Doping with Ni induces a decrease in Tc and the onset of spin-vortex crystal (SVC) antiferromagnetic order, which consists of spins pointing inwards to or outwards from alternating As sites on the diagonals of the in-plane square Fe lattice. Here we study the band structure of CaK(Fe0.95Ni0.05)4As4 (Tc=10 K, TSVC=50 K) using quasiparticle interference with a scanning tunneling microscope and show how the SVC modifies the band structure and induces a fourfold superconducting gap anisotropy

    Quantum error mitigation in quantum annealing

    Full text link
    Quantum Error Mitigation (QEM) presents a promising near-term approach to reduce error when estimating expectation values in quantum computing. Here, we introduce QEM techniques tailored for quantum annealing, using Zero-Noise Extrapolation (ZNE). We implement ZNE through zero-temperature extrapolation as well as energy-time rescaling. We conduct experimental investigations into the quantum critical dynamics of a transverse-field Ising spin chain, demonstrating the successful mitigation of thermal noise through both of these techniques. Moreover, we show that energy-time rescaling effectively mitigates control errors in the coherent regime where the effect of thermal noise is minimal. Our ZNE results agree with exact calculations of the coherent evolution over a range of annealing times that exceeds the coherent annealing range by almost an order of magnitude.Comment: 10 pages, 5 figure

    Towards a topological quantum chemistry description of correlated systems: The case of the Hubbard diamond chain

    Full text link
    The recently introduced topological quantum chemistry (TQC) framework has provided a description of universal topological properties of all possible band insulators in all space groups based on crystalline unitary symmetries and time reversal. While this formalism filled the gap between the mathematical classification and the practical diagnosis of topological materials, an obvious limitation is that it only applies to weakly interacting systems, which can be described within band theory. It is an open question to which extent this formalism can be generalized to correlated systems that can exhibit symmetry-protected topological phases which are not adiabatically connected to any band insulator. In this work, we address the many facets of this question by considering the specific example of an extended version of a Hubbard diamond chain. This model features a Mott insulator, a trivial insulating phase, and an obstructed atomic limit phase. Here we first discuss the nature of the Mott insulator and determine the phase diagram and topology of the interacting model with infinite density matrix renormalization group calculations, variational Monte Carlo simulations, and with many-body topological invariants. We then proceed by considering a generalization of the TQC formalism to Green's functions combined with the concept of a topological Hamiltonian to identify the topological nature of the phases. Here we use cluster perturbation theory to calculate the Green's functions. The results are benchmarked with the above-determined phase diagram, and we discuss the applicability and limitations of the approach and its possible extensions in the diagnosis of topological phases in materials, in contrast to the use of many-body topological invariants
    corecore