5 research outputs found

    Tissue effects of a newly developed diode pumped pulsed Thulium:YAG laser compared to continuous wave Thulium:YAG and pulsed Holmium:YAG laser

    No full text
    Purpose!#!The objective of this study is to evaluate the laser-tissue effects of laser radiation emitted by a newly developed high frequency pulsed Tm:YAG laser in comparison to the continuous wave Tm:YAG laser and the pulsed Ho:YAG laser.!##!Methods!#!Ex-vivo experiments were performed on freshly slaughtered porcine kidneys in a physiological saline solution. Experiments were performed using two different laser devices in different settings: A Tm:YAG laser was operated in a pulsed mode up to 300 Hz and in a continuous wave (CW) mode. Results were compared with a 100 W standard pulsed Ho:YAG laser system. Comparative tissue experiments were performed at 5 W, 40 W and 80 W. The incision depth and the laser damage zone were measured under a microscope using a calibrated ocular scale.!##!Results!#!Increased laser power resulted in increased incision depth and increased laser damage zone for all investigated lasers in this set-up. The Ho:YAG created the largest combined tissue effect at the 5 W power setting and seems to be the least controllable laser at low power for soft tissue incisions. The CW Tm:YAG did not incise at all at 5 W, but created the largest laser damage zone. For the new pulsed Tm:YAG laser the tissue effect grew evenly with increasing power.!##!Conclusion!#!Among the investigated laser systems in this setting the pulsed Tm:YAG laser shows the most controllable behavior, insofar as both the incision depth and the laser damage zone increase evenly with increasing laser power

    Laser-guided real-time automatic target identification for endoscopic stone lithotripsy: a two-arm in vivo porcine comparison study

    No full text
    Introduction and objective!#!Thermal injuries associated with Holmium laser lithotripsy of the urinary tract are an underestimated problem in stone therapy. Surgical precision relies exclusively on visual target identification when applying laser energy for stone disintegration. This study evaluates a laser system that enables target identification automatically during bladder stone lithotripsy, URS, and PCNL in a porcine animal model.!##!Methods!#!Holmium laser lithotripsy was performed on two domestic pigs by an experienced endourology surgeon in vivo. Human stone fragments (4-6 mm) were inserted in both ureters, renal pelvises, and bladders. Ho:YAG laser lithotripsy was conducted as a two-arm comparison study, evaluating the target identification system against common lithotripsy. We assessed the ureters' lesions according to PULS and the other locations descriptively. Post-mortem nephroureterectomy and cystectomy specimens were examined by a pathologist.!##!Results!#!The sufficient disintegration of stone samples was achieved in both setups. Endoscopic examination revealed numerous lesions in the urinary tract after the commercial Holmium laser system. The extent of lesions with the feedback system was semi-quantitatively and qualitatively lower. The energy applied was significantly less, with a mean reduction of more than 30% (URS 27.1%, PCNL 52.2%, bladder stone lithotripsy 17.1%). Pathology examination revealed only superficial lesions in both animals. There was no evidence of organ perforation in either study arm.!##!Conclusions!#!Our study provides proof-of-concept for a laser system enabling automatic real-time target identification during lithotripsy on human urinary stones. Further studies in humans are necessary, and to objectively quantify this new system's advantages, investigations involving a large number of cases are mandatory

    Literaturverzeichnis

    No full text
    corecore