2,737 research outputs found

    Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without prior domain knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Holdem, a poker game of real-world scale, NFSP learnt a strategy that approached the performance of state-of-the-art, superhuman algorithms based on significant domain expertise.Comment: updated version, incorporating conference feedbac

    Color screening in 2+12+1 flavor QCD at large distances

    Full text link
    We study correlation functions of spatially separated static quark-antiquark pairs in 2+12+1 flavor QCD in order to investigate the nature of color screening at high temperatures. We perform lattice calculations in a wide temperature range, 116 MeV≤T≤5814 MeV116~\text{MeV} \leq T \leq 5814~\text{MeV}, using the highly improved staggered quark (HISQ) action and several lattice spacings to control discretization effects. We alleviate the UV noise problem through the use of four dimensional hypercubic (HYP) smearing, which enables the reconstruction of correlators and determination of screening properties even at low temperatures and at large distances.Comment: 8 pages, 9 figure

    The Need for Theoretically Consistent Efficiency Frontiers

    Get PDF
    The availability of efficiency estimation software freely distributed via the internet and relatively easy to use recently inflated the number of corresponding applications. The resulting efficiency estimates are often used without a critical assessment with respect to the literature on theoretical consistency, flexibility and the choice of the appropriate functional form. The robustness of policy suggestions based on inferences from efficiency measures nevertheless crucially depends on theoretically well-founded estimates. This paper addresses stochastic efficiency measurement by critically reviewing the theoretical consistency of recently published technical efficiency estimates. The results confirm the need for a posteriori checking the regularity of the estimated frontier by the researcher and, if necessary, the a priori imposition of the theoretical requirements.functional form, stochastic efficiency analysis, theoretical consistency, Research and Development/Tech Change/Emerging Technologies, C51, D24, Q12,

    Analysis of Recent Dynamic Changes of Jakobshavn Isbrae, West Greenland, using a Thermomechanical Model

    Get PDF
    Jakobshavn Isbrae is a major marine terminating outlet glacier of the western Greenland Ice Sheet, which has been undergoing widespread acceleration and strong mass loss since the disintegration of its floating ice tongue in the late 1990s. The underlying mechanisms are poorly understood despite a wealth in observational and modelling studies. This doctoral thesis analyses the dynamic changes of Jakobshavn Isbrae using the Ice Sheet System Model (ISSM), a state-of-the-art finite-element ice flow model. Two missing model features for 1) the modelling the polythermal regime of glaciers and ice sheets, and 2) the dynamic evolution of its horizontal calving front position are designed and implemented into ISSM. A three-dimensional, thermodynamically coupled model of Jakobshavn Isbrae is set up and calibrated using modern observational data products. Low basal drag in the trough under the ice stream requires that its high driving stress is balanced by lateral drag in the shear margins, which allows for high flow velocities, as the ice viscosity is strain-rate-dependent. The developed modules are applied to the glacier model, which captures 90% of the observed changes from 1985 to 2015. Analysis of the model results reveals that calving front retreat is able to trigger widespread inland acceleration due to a rheological ice viscosity drop in the shear margins. Thermal feedbacks contribute 5 to 10% to the total acceleration. The study shows that Jakobshavn Isbrae will continue to contribute to eustatic sea level rise for at least the next century due to ongoing geometry adjustment to the new calving front position. Future fields of research include deriving a suitable calving rate parametrisation for large-scale ice flow models, a material law for temperate ice with a microscopic water content larger than 1%, and technical refinements of the modules developed for this thesis

    NLO QCD corrections to W+ W- b anti-b production with leptonic decays in the light of top quark mass and asymmetry measurements

    Get PDF
    We present the NLO QCD corrections to the processes p p and p anti-p to W+ W- b anti-b including leptonic decays of the W bosons. Non-resonant contributions as well as diagrams with doubly resonant and singly resonant top quark propagators are fully taken into account. We employ the narrow width approximation to perform the decays of the W bosons; spin correlations are however preserved. We also calculate observables relevant for top quark mass measurements, and study the impact of kinematical requirements and different scale choices on t anti-t asymmetries.Comment: 29 pages, 14 figures, version submitted to and accepted by JHE
    • …
    corecore