12,782 research outputs found

    Isolated photon + jet photoproduction as a tool to constrain the gluon distribution in the proton and the photon

    Full text link
    We analyse how the reaction gamma p -> gamma + jet + X can serve to constrain the gluon distributions. Our results are based on a code of partonic event generator type which includes full NLO corrections. We conclude that there are phase space domains in which either the gluon in the photon or the gluon in the proton give important contributions to the cross section, which should be observable in HERA experiments.Comment: 22 pages LaTeX, 14 figure

    Is a Large Intrinsic k_T Needed to Describe Photon + Jet Photoproduction at HERA?

    Full text link
    We study the photoproduction of an isolated photon and a jet based on a code of partonic event generator type which includes the full set of next-to-leading order corrections. We compare our results to a recent ZEUS analysis in which an effective k_T of the incoming partons has been determined. We find that no additional intrinsic k_T is needed to describe the data.Comment: 23 pages LaTeX, 12 figure

    Isolated prompt photon photoproduction at NLO

    Get PDF
    We present a full next-to-leading order code to calculate the photoproduction of prompt photons. The code is a general purpose program of partonic event generator type with large flexibility. We study the possibility to constrain the photon structure functions and comment on isolation issues. A comparison to ZEUS data is also shown.Comment: 22 pages LaTeX, 15 figure

    A NLO calculation of the hadron-jet cross section in photoproduction reactions

    Get PDF
    We study the photoproduction of large-p_T charged hadrons in e p collisions, both for the inclusive case and for the case where a jet in the final state is also measured. Our results are obtained by a NLO generator of partonic events. We discuss the sensitivity of the cross section to the renormalisation and factorisation scales, and to various fragmentation function parametrisations. The possibility to constrain the parton densities in the proton and in the photon is assessed. Comparisons are made with H1 data for inclusive charged hadron production.Comment: 28 pages LaTeX, 14 figure

    NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers

    Full text link
    We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.Comment: replaced by published version; in addition typos corrected in definition of pole coefficients below Eq.(2.4

    NNLO predictions for Z-boson pair production at the LHC

    Full text link
    We present a calculation of the NNLO QCD corrections to Z-boson pair production at hadron colliders, based on the N-jettiness method for the real radiation parts. We discuss the size and shape of the perturbative corrections along with their associated scale uncertainties and compare our results to recent LHC data at s=13\sqrt{s}=13 TeV.Comment: 19 pages, 2 Tables, 4 figures. Version to appear in JHE

    SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop

    Full text link
    SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3.0 of the program, which has major improvements compared to version 2: it is faster, contains new decomposition strategies, an improved user interface and various other new features which extend the range of applicability.Comment: 46 pages, version to appear in Comput.Phys.Com

    Numerical evaluation of two-loop integrals with pySecDec

    Full text link
    We describe the program pySecDec, which factorises endpoint singularities from multi-dimensional parameter integrals and can serve to calculate integrals occurring in higher order perturbative calculations numerically. We focus on the new features and on frequently asked questions about the usage of the program.Comment: 11 pages, to appear in the proceedings of the HiggsTools Final Meeting, IPPP, University of Durham, UK, September 201

    To Learn or Not to Learn Features for Deformable Registration?

    Full text link
    Feature-based registration has been popular with a variety of features ranging from voxel intensity to Self-Similarity Context (SSC). In this paper, we examine the question on how features learnt using various Deep Learning (DL) frameworks can be used for deformable registration and whether this feature learning is necessary or not. We investigate the use of features learned by different DL methods in the current state-of-the-art discrete registration framework and analyze its performance on 2 publicly available datasets. We draw insights into the type of DL framework useful for feature learning and the impact, if any, of the complexity of different DL models and brain parcellation methods on the performance of discrete registration. Our results indicate that the registration performance with DL features and SSC are comparable and stable across datasets whereas this does not hold for low level features.Comment: 9 pages, 4 figure

    Sorption-induced Static Bending of Microcantilevers Coated with Viscoelastic Material

    Get PDF
    Absorption of a chemical analyte into a polymercoating results in an expansion governed by the concentration and type of analyte that has diffused into the bulk of the coating. When the coating is attached to a microcantilever, this expansion results in bending of the device. Assuming that absorption (i.e., diffusion across the surface barrier into the bulk of the coating) is Fickian, with a rate of absorption that is proportional to the difference between the absorbed concentration and the equilibrium concentration, and the coating is elastic, the bending response of the coated device should exhibit a first-order behavior. However, for polymercoatings, complex behaviors exhibiting an overshoot that slowly decays to the steady-state value have been observed. A theoretical model of absorption-induced static bending of a microcantilever coated with a viscoelastic material is presented, starting from the general stress/strain relationship for a viscoelastic material. The model accounts for viscoelasticstress relaxation and possible coating plasticization. Calculated responses show that the model is capable of reproducing the same transient behavior exhibited in the experimental data. The theory presented can also be used for extracting viscoelasticproperties of the coating from the measured bending data
    • …
    corecore