28 research outputs found

    RNA and Protein Requirements for Incorporation of the Pol Protein into Foamy Virus Particles

    No full text
    Foamy viruses (FVs) generate their Pol protein precursor molecule independently of the Gag protein from a spliced mRNA. This mode of expression raises the question of the mechanism of Pol protein incorporation into the viral particle (capsid). We previously showed that the packaging of (pre)genomic RNA is essential for Pol encapsidation (M. Heinkelein, C. Leurs, M. Rammling, K. Peters, H. Hanenberg, and A. Rethwilm, J. Virol. 76:10069-10073, 2002). Here, we demonstrate that distinct sequences in the RNA, which we termed Pol encapsidation sequences (PES), are required to incorporate Pol protein into the FV capsid. Two PES were found, which are contained in the previously identified cis-acting sequences necessary to transfer an FV vector. One PES is located in the U5 region of the 5′ long terminal repeat and one at the 3′ end of the pol gene region. Neither element has any significant effect on RNA packaging. However, deletion of either PES resulted in a significant reduction in Pol encapsidation. On the protein level, we show that only the Pol precursor, but not the individual reverse transcriptase (RT) and integrase (IN) subunits, is incorporated into FV particles. However, enzymatic activities of the protease (PR), RT, or IN are not required. Our results strengthen the view that in FVs, (pre)genomic RNA functions as a bridging molecule between Gag and Pol precursor proteins

    Retrotransposition and Cell-to-Cell Transfer of Foamy Viruses

    No full text
    A remarkable feature of the prototype foamy virus (PFV) replication pathway has been reported to consist of the ability to retrotranspose intracellularly with high efficiency (M. Heinkelein, T. Pietschmann, G. Jármy, M. Dressler, H. Imrich, J. Thurow, D. Lindemann, M. Bock, A. Moebes, J. Roy, O. Herchenröder, and A. Rethwilm, EMBO J. 19:3436-3345, 2000). PFV intracellular retrotransposition (IRT) was reported to be enhanced by coexpression of fusion-defective envelope protein. To investigate the possibility of cell-to-cell transfer of PFV genomes, which could mimic IRT, we performed cocultivation experiments with cells transfected with an IRT-competent and marker gene-expressing PFV vector together with cells expressing a different marker and measured cells positive for both markers. The findings corroborated the initial report on IRT of Env-deficient PFV. Furthermore, they indicated that viral cores that have incorporated fusion-deficient Env can be transferred from cell to cell in a cell type-specific manor. One possible explanation consists of a minor alternative cleavage site in Env that can be used to expose the fusion peptide of the Env transmembrane protein, which appears to be required for virus uptake

    N-Terminal Gag Domain Required for Foamy Virus Particle Assembly and Export

    No full text
    Among the Retroviridae, foamy viruses (FVs) exhibit an unusual way of particle assembly and a highly specific incorporation of envelope protein into progeny virions. We have analyzed deletions and point mutants of the prototypic FV gag gene for capsid assembly and egress, envelope protein incorporation, infectivity, and ultrastructure. Deletions introduced at the 3′ end of gag revealed the first 297 amino acids (aa) to be sufficient for specific Env incorporation and export of particulate material. Deletions introduced at the 5′ end showed the region between aa 6 and 200 to be dispensable for virus capsid assembly but required for the incorporation of Env and particle egress. Point mutations were introduced in the 5′ region of gag to target residues conserved among FVs from different species. Alanine substitutions of residues in a region between aa 40 and 60 resulted in severe alterations in particle morphology. Furthermore, at position 50, this region harbors the conserved arginine that is presumably at the center of a signal sequence directing FV Gag proteins to a cytoplasmic assembly site

    Improved Primate Foamy Virus Vectors and Packaging Constructs

    No full text
    Foamy virus (FV) vectors that have minimal cis-acting sequences and are devoid of residual viral gene expression were constructed and analyzed by using a packaging system based on transient cotransfection of vector and different packaging plasmids. Previous studies indicated (i) that FV gag gene expression requires the presence of the R region of the long terminal repeat and (ii) that RNA from packaging constructs is efficiently incorporated into vector particles. Mutants with changes in major 5′ splice donor (SD) site located in the R region identified this sequence element as responsible for regulating gag gene expression by an unidentified mechanism. Replacement of the FV 5′ SD with heterologous splice sites enabled expression of the gag and pol genes. The incorporation of nonvector RNA into vector particles could be reduced to barely detectable levels with constructs in which the human immunodeficiency virus 5′ SD or an unrelated intron sequence was substituted for the FV 5′ untranslated region and in which gag expression and pol expression were separated on two different plasmids. By this strategy, efficient vector transfer was achieved with constructs that have minimal genetic overlap
    corecore