108 research outputs found

    The current treatment—a survey of osteoporotic fracture treatment. Osteoporotic spine fractures: the spine surgeon's perspective

    Get PDF
    For the spine surgeon the problems of the osteoporotic spine can be a painful simple compression fracture, the persisting instability after a fracture, the silent loss of posture due to progressive collapse of multiple vertebrae, and neurological complications related to an osteoporotic fracture. The use of polymethylmethacrylate (PMMA) for the reinforcement of osteoporotic vertebral bodies has turned out to be extremely efficient. Although the natural course of pain due to vertebral fractures decreases within the first weeks in the majority of patients, there remains a number of them with persistent pain and/or ongoing vertebral collapse. With percutaneous cement injection one can achieve fast and lasting pain reduction in 80% to 93% of patients. With multilevel injections it is possible to address the severe osteoporotic spine as a whole where we can halt the ongoing collapse and preserve posture efficiently. Rectification of lordosis can be achieved in fresh fractures with the kyphoplasty technique and, even more efficiently, with the lordoplasty procedure. Kyphosis correction ranges from 8.5° to 14°, and restoration of vertebral body (VB) height goes up to 90%. When surgical stabilization is required, the combination of PMMA reinforcement and fixation with screws appears the only alternative in order to anchor the implants in the severely osteoporotic bon

    Kyphoplasty for treatment of osteoporotic vertebral fractures

    Get PDF
    Cement reinforcement for the treatment of osteoporotic vertebral fractures is efficient mean with high success in pain release and prevention of further sintering of the reinforced vertebrae; however, the technique does not allow to address the kyphotic deformity. Kyphoplasty was designed to address the kyphotic deformity and help to realign the spine. It involves the percutaneous placement of an inflatable bone tamp into a vertebral body. Restoration of VB height and kyphosis correction is achieved by inflation of the bone tamp with liquid. After deflation, a cavity is created that eases the cement application. The potential of kyphosis reduction is given in fresh fractures with a range of 0-90% for height restoration and absolute correction of the kyphotic angle of 8.5°. The cavity formation, on one hand, and the different cementing technique leads to lower risk for cement extravasation. An alternative method for kyphosis correction represents the so-called lordoplasty where the adjacent vertebrae are reinforced first and with the cannulas in place acting as a lever the reduction of the collapsed vertebra can be performed. The results with respect to kyphosis correction are superior in comparison with a kyphoplasty procedur

    Kyphoplasty for treatment of osteoporotic vertebral fractures: a prospective non-randomized study

    Get PDF
    Background: Minimally invasive augmentation techniques of vertebral bodies have been advocated to treat osteoporotic vertebral body compression fractures (VBCFs). Kyphoplasty is designed to address both fracture-related pain as well as kyphotic deformity usually associated with fracture. Previous studies have indicated the potential of this technique for reduction of vertebral body height, but there has been little investigation into whether this has a lasting effect. The current study reports on our experience and the one-year results in 27 kyphoplasty procedures (24 patients) for osteoporotic VBCFs. Results: All but one patient experienced pain relief following the procedure (on VAS 1-10)—with a lasting effect over the follow-up period in 25 cases. An average vertebral kyphosis reduction of 47.7% was achieved with no loss of reduction after one year. The potential for reduction was statistically related to the pre-operative amount of kyphosis, the level treated, and the age of the fracture, but not to the age of the patient. During follow-up, one fracture adjacent to a treated level was observed. Pain relief was not related to the amount of reduction. Conclusion: Kyphoplasty is an effective treatment of VBCFs in terms of pain relief and durable reduction of deformity. Whether spinal realignment results in an improved long-term clinical outcome remains to be investigate

    Lordoplasty: report on early results with a new technique for the treatment of vertebral compression fractures to restore the lordosis

    Get PDF
    Cement augmentation using PMMA cement is known as an efficient treatment for osteoporotic vertebral compression fractures with a rapid release of pain in most patients and prevention of an ongoing kyphotic deformity of the vertebrae treated. However, after a vertebroplasty there is no chance to restore vertebral height. Using the technique of kyphoplasty a certain restoration of vertebral body height can be achieved. But there is a limitation of recovery due to loss of correction when deflating the kyphoplastic ballon and before injecting the cement. In addition, the instruments used are quite expensive. Lordoplasty is another technique to restore kyphosis by indirect fracture reduction as it is used with an internal fixateur. The fractured and the adjacent vertebrae are instrumented with bone cannulas bipediculary and the adjacent vertebrae are augmentated with cement. After curing of the cement the fractured vertebra is reduced by applying a lordotic moment via the cannulas. While maintaining the pretension the fractured vertebra is reinforced. We performed a prospective trial of 26 patients with a lordoplastic procedure. There was a pain relief of about 87% and a significant decrease in VAS value from 7.3 to 1.9. Due to lordoplasty there was a significant and permanent correction in vertebral and segmental kyphotic angle about 15.2° and 10.0°, respectively and also a significant restoration in anterior and mid vertebral height. Lordoplasty is a minimal invasive technique to restore vertebral body height. An immediate relief of pain is achieved in most patients. The procedure is safe and cost effectiv

    Differences in endplate deformation of the adjacent and augmented vertebra following cement augmentation

    Get PDF
    Vertebral cement augmentation can restore the stiffness and strength of a fractured vertebra and relieve chronic pain. Previous finite element analysis, biomechanical tests and clinical studies have indirectly associated new adjacent vertebral fractures following augmentation to altered loading. The aim of this repeated measures in situ biomechanical study was to determine the changes in the adjacent and augmented endplate deformation following cement augmentation of human cadaveric functional spine units (FSU) using micro-computed tomography (micro-CT). The surrounding soft tissue and posterior elements of 22 cadaveric human FSU were removed. FSU were assigned to two groups, control (n=8) (loaded on day 1 and day 2) and augmented (n=14) (loaded on day 1, augmented 20% cement fill, and loaded on day 2). The augmented group was further subdivided into a prophylactic augmentation group (n=9), and vertebrae which spontaneously fractured during loading on day 1 (n=5). The FSU were axially loaded (200, 1,000, 1,500-2,000N) within a custom made radiolucent, saline filled loading device. At each loading step, FSUs were scanned using the micro-CT. Endplate heights were determined using custom software. No significant increase in endplate deformation following cement augmentation was noted for the adjacent endplate (P>0.05). The deformation of the augmented endplate was significantly reduced following cement augmentation for both the prophylactic and fracture group (P<0.05, P<0.01, respectively). Endplate deformation of the controls showed no statistically significant differences between loading on day 1 and day 2. A linear relationship was noted between the applied compressive load and endplate deflection (R 2=0.58). Evidence of significant endplate deformation differences between unaugmented and augmented FSU, while evident for the augmented endplate, was not present for the adjacent endplate. This non-invasive micro-CT method may also be useful to investigate endplate failure, and parameters that predict vertebral failur

    Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration

    Get PDF
    Degenerative disc disease (DDD) is a common finding in MRI scans and X-rays. However, their correlation to morphological and biochemical changes is not well established. In this study, radiological and MRI parameters of DDD were assessed and compared with morphological and biochemical findings of disc degeneration. Thirty-nine human lumbar discs (L1-S1), age 19-86years, were harvested from eight cadavers. Within 48h postmortem, MRIs in various spin-echo sequences and biplanar radiographs of intact spines were obtained. Individual discs with endplates were then sectioned in the mid-sagittal plane and graded according to the morphological appearance. Samples from the nucleus of each disc were harvested for biochemical analysis including water and proteoglycan contents. On MRIs, T2-signal intensity, Modic changes, disc extension beyond the interspace (DEBIT), nucleus pulposus shape, annular tears, osteophytes and endplate integrity were graded. On radiographs, an independent observer classified the parameters disc height, endplate sclerosis, osteophytes, Schmorl's nodes, intradiscal calcifications and endplate shape. General linear-regression models were used for statistical analysis. Backward elimination with a 10% significance cut-off level was used to identify the most significant parameters, which then were summed to create composite scores for radiography, MRI and the combination of both methods. The grading was performed by three observers, and a reliability analysis using Cronbach's alpha model was used to control interobserver agreement. The three radiographic parameters height-loss, osteophytes and intradiscal calcifications correlated significantly with the morphological degree of degeneration (p<0.001, R2=642). Significant differences of even one morphological grade could also be differentiated in the composite radiological score (p<0.05), except at the extremes between grades 1 and 2 and grades 4 and 5. All MRI parameters correlated significantly with the morphological grade (p<0.05); however Modic changes, T2-intensity and osteophytes accounted for 83% of the variation in the data. T2-signal intensity correlated significantly with H2O and proteoglycan content (p<0.001), and was best for detecting highly degenerated discs. Regression showed that the combined score was better correlated with the morphological grade (p<0.001, R2 =775) than either the composite radiographic (p<0.001, R2 =642) or composite MRI (p<0.001, R2 =696) alone. Based on the combined score, a backwards elimination of the regression was performed, in which the parameters Modic changes, and T2-intensity loss (MRI) as well as calcifications (X-ray) accounted for 87% of the variability. The interobserver validation showed a high correlation for all three scores (Cronbach's alpha values ranging from 0.95 to 0.97). Conclusion: selective imaging parameters and a newly created scoring scheme were found to correlate with disc degeneration as determined in a morphological manner. Surprisingly, radiographic parameters were able to distinguish different stages of degeneration, whereas MRI could only detect advanced stages of disc degeneration. We conclude that X-rays may remain a cost-effective, non-invasive in vivo-grading method to detect early disc degeneration, and, combined with MRI, correlate best with morphological and biochemical assessment of disc degeneratio

    Radiographic and safety details of vertebral body stenting : results from a multicenter chart review

    Get PDF
    Background: Up to one third of BKP treated cases shows no appreciable height restoration due to loss of both restored height and kyphotic realignment after balloon deflation. This shortcoming has called for an improved method that maintains the height and realignment reached by the fully inflated balloon until stabilization of the vertebral body by PMMA-based cementation. Restoration of the physiological vertebral body height for pain relief and for preventing further fractures of adjacent and distant vertebral bodies must be the main aim for such a method. A new vertebral body stenting system (VBS) stabilizes the vertebral body after balloon deflation until cementation. The radiographic and safety results of the first 100 cases where VBS was applied are presented. Methods: During the planning phase of an ongoing international multicenter RCT, radiographic, procedural and followup details were retrospectively transcribed from charts and xrays for developing and testing the case report forms. Radiographs were centrally assessed at the institution of the first/senior author. Results: 100 patients (62 with osteoporosis) with a total of 103 fractured vertebral bodies were treated with the VBS system. 49 were females with a mean age of 73.2 years; males were 66.7 years old. The mean preoperative anterior-middle-posterior heights were 20.3-17.6-28.0 mm, respectively. The mean local kyphotic angle was 13.1°. The mean preoperative Beck Index (anterior edge height/posterior edge height) was 0.73, the mean alternative Beck Index (middle height/posterior edge height) was 0.63. The mean postoperative heights were restored to 24.5-24.6-30.4 mm, respectively. The mean local kyphotic angle was reduced to 8.9°. The mean postoperative Beck Index was 0.81, the mean alternative one was 0.82. The overall extrusion rate was 29.1%, the symptomatic one was 1%. In the osteoporosis subgroup there were 23.8% extrusions. Within the three months followup interval there were 9% of adjacent and 4% of remote new fractures, all in the osteoporotic group. Conclusions: VBS showed its strengths especially in realignment of crush and biconcave fractures. Given that fracture mobility is present, the realignment potential is sound and increases with the severity of preoperative vertebral body deformation

    Safety, effectiveness and predictors for early reoperation in therapeutic and prophylactic vertebroplasty: short-term results of a prospective case series of patients with osteoporotic vertebral fractures

    Get PDF
    Introduction: Vertebroplasty (VP) is a cost-efficient alternative to kyphoplasty; however, regarding safety and vertebral body (VB) height restoration, it is considered inferior. We assessed the safety and efficacy of VP in alleviating pain, improving quality of life (QoL) and restoring alignment. Methods: In a prospective monocenter case series from May 2007 until July 2008, there were 1,408 vertebroplasties performed during 319 interventions in 306 patients with traumatic, lytic and osteoporotic fractures. The 249 interventions in 233 patients performed because of osteoporotic vertebral fractures were analyzed regarding demographics, treatment and radiographic details, pain alleviation (VAS), QoL improvement (NASS and EQ-5D), complications and predictors for new fractures requiring a reoperation. Results: The osteoporotic patient sample consisted of 76.7% (179) females with a median age of 80years. A total of 54 males had a median age of 77years. On average, there were 1.8 VBs fractured and 5 VBs treated. The preoperative pain was assessed by the visual analog scale (VAS) and decreased from 54.9 to 40.4 pts after 2months and 31.2 pts after 6months. Accordingly, the QoL on the EQ-5D measure (−0.6 to 1) improved from 0.35 pts before surgery to 0.56 pts after 2 and to 0.68 pts after 6months. The preoperative Beck Index (anterior height/posterior height) improved from a mean of 0.64 preoperative to 0.76 postoperative, remained stable at 2months and slightly deteriorated to 0.72 at 6months postoperatively. There were cement leakages in 26% of the fractured VBs and in 1.4% of the prophylactically cemented VBs; there were symptoms in 4.3%, and most of them were temporary hypotension and one pulmonary cement embolism that remained asymptomatic. The univariate regression model revealed a tendency for a reduced risk for new or refractures on radiographs (OR=2.61, 95% CI 0.92-7.38, p=0.12) and reoperations (OR=2.9, 95% CI 0.94-8.949, p=0.1) when prophylactic augmentation was performed. The final multivariate regression model revealed male patients to have an about three times higher refracture risk (radiographic) (OR=2.78, p=0.02) at 6months after surgery. Patients with a lumbar index fracture had an about three to five times higher refracture/reoperation risk than patients with a thoracic (OR=0.33/0.35, p=0.009/0.01) or thoracolumbar (OR=0.32/0.22, p=0.099/0.01) index fracture. Conclusion: If routinely used, VP is a safe and efficacious treatment option for osteoporotic vertebral fractures with regard to pain relief and improvement of the QoL. Even segmental realignment can be partially achieved with proper patient positioning. Certain patient or fracture characteristics increase the risk for early radiographic refractures or new fractures, or a reoperation; a consequent prophylactic augmentation showed protective tendencies, but the study was underpowered for a final conclusio
    • 

    corecore