68 research outputs found

    P31 phosphor persistence at photopic mean luminance level.

    Get PDF
    P31 phosphor screens are frequently used for short-term presentation of dot and grating patterns, but experimental data obtained with this technique have been criticized because of possible parasitic effects of phosphor persistence on subjects' visual performance. Recently, this issue provoked a controversial discussion in Vision Research (Groner et al., 1993; Westheimer, 1993, 1994; Irwin, 1994; Di Lollo et al., 1994) which was concerned with persistence effects of P31 screens for dot patterns. Supplementing this discussion, the present work deals with the effects of different types of patterns (dot pattern vs. gratings) and background mean-luminance levels (scotopic vs. phototopic) on phosphor persistence. Physical measurements of P31 persistence occurring with grating patterns of a mean luminance of 20 cd m-2 (i.e. photopic range) were obtained by using an extremely linear photometer with high temporal resolution. Under this photopic condition, the measurements demonstrate a fast decay of residual grating contrast to 1.4% of its original value within 50 ms after pattern offset. This phosphor behavior must be considered when designing an experiment with a P31 screen though it certainly embodies no problems in many applications

    A dynamic 1/f noise protocol to assess visual attention without biasing perceptual processing

    Get PDF
    Psychophysical paradigms measure visual attention via localized test items to which observers must react or whose features have to be discriminated. These items, however, potentially interfere with the intended measurement, as they bias observers' spatial and temporal attention to their location and presentation time. Furthermore, visual sensitivity for conventional test items naturally decreases with retinal eccentricity, which prevents direct comparison of central and peripheral attention assessments. We developed a stimulus that overcomes these limitations. A brief oriented discrimination signal is seamlessly embedded into a continuously changing 1/f noise field, such that observers cannot anticipate potential test locations or times. Using our new protocol, we demonstrate that local orientation discrimination accuracy for 1/f filtered signals is largely independent of retinal eccentricity. Moreover, we show that items present in the visual field indeed shape the distribution of visual attention, suggesting that classical studies investigating the spatiotemporal dynamics of visual attention via localized test items may have obtained a biased measure. We recommend our protocol as an efficient method to evaluate the behavioral and neurophysiological correlates of attentional orienting across space and time

    Attention allocation before antisaccades

    Get PDF
    In the present study, we investigated the distribution of attention before antisaccades. We used a dual task paradigm, in which participants made prosaccades or antisaccades and discriminated the orientation of a visual probe shown at the saccade goal, the visual cue location (antisaccade condition), or a neutral location. Moreover, participants indicated whether they had made a correct antisaccade or an erroneous prosaccade. We observed that, while spatial attention in the prosaccade task was allocated only to the saccade goal, attention in the antisaccade task was allocated both to the cued location and to the antisaccade goal. This suggests parallel attentional selection of the cued and antisaccade locations. We further observed that in error trials-in which participants made an incorrect prosaccade instead of an antisaccade-spatial attention was biased towards the prosaccade goal. These erroneous prosaccades were mostly unnoticed and were often followed by corrective antisaccades with very short latencies (<100 ms). Data from error trials therefore provide further evidence for the parallel programming of the reflexive prosaccade to the cue and the antisaccade to the intended location. Taken together, our results suggest that attention allocation and saccade goal selection in the antisaccade task are mediated by a common competitive process

    Stimulus blanking reveals contrast‐dependent transsaccadic feature transfer

    Get PDF

    Attention allocation before antisaccades

    Get PDF
    In the present study, we investigated the distribution of attention before antisaccades. We used a dual task paradigm, in which participants made prosaccades or antisaccades and discriminated the orientation of a visual probe shown at the saccade goal, the visual cue location (antisaccade condition), or a neutral location. Moreover, participants indicated whether they had made a correct antisaccade or an erroneous prosaccade. We observed that, while spatial attention in the prosaccade task was allocated only to the saccade goal, attention in the antisaccade task was allocated both to the cued location and to the antisaccade goal. This suggests parallel attentional selection of the cued and antisaccade locations. We further observed that in error trials-in which participants made an incorrect prosaccade instead of an antisaccade-spatial attention was biased towards the prosaccade goal. These erroneous prosaccades were mostly unnoticed and were often followed by corrective antisaccades with very short latencies (<100 ms). Data from error trials therefore provide further evidence for the parallel programming of the reflexive prosaccade to the cue and the antisaccade to the intended location. Taken together, our results suggest that attention allocation and saccade goal selection in the antisaccade task are mediated by a common competitive process

    Independent Effects of Eye and Hand Movements on Visual Working Memory

    Get PDF
    Both eye and hand movements have been shown to selectively interfere with visual working memory. We investigated working memory in the context of simultaneous eye-hand movements to approach the question whether the eye and the hand movement systems independently interact with visual working memory. Participants memorized several locations and performed eye, hand, or simultaneous eye-hand movements during the maintenance interval. Subsequently, we tested spatial working memory at the eye or the hand motor goal, and at action-irrelevant locations. We found that for single eye and single hand movements, memory at the eye or hand target was significantly improved compared to action-irrelevant locations. Remarkably, when an eye and a hand movement were prepared in parallel, but to distinct locations, memory at both motor targets was enhanced-with no tradeoff between the two separate action goals. This suggests that eye and hand movements independently enhance visual working memory at their goal locations, resulting in an overall working memory performance that is higher than that expected when recruiting only one effector

    Sounds are remapped across saccades

    Get PDF
    To achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy

    Independent selection of eye and hand targets suggests effector-specific attentional mechanisms

    Get PDF
    Both eye and hand movements bind visual attention to their target locations during movement preparation. However, it remains contentious whether eye and hand targets are selected jointly by a single selection system, or individually by independent systems. To unravel the controversy, we investigated the deployment of visual attention - a proxy of motor target selection - in coordinated eye-hand movements. Results show that attention builds up in parallel both at the eye and the hand target. Importantly, the allocation of attention to one effector's motor target was not affected by the concurrent preparation of the other effector's movement at any time during movement preparation. This demonstrates that eye and hand targets are represented in separate, effector-specific maps of action-relevant locations. The eye-hand synchronisation that is frequently observed on the behavioral level must emerge from mutual influences of the two effector systems at later, post-attentional processing stages
    corecore