12 research outputs found
Influence of nanosecond microwave pulses on the level of cortycosterone
This article describes experimental data on 30 nonlinear rats exposed to microwave radiation at frequencies 8, 13, 16 and 22 pulse per second (pps) in order to record corticosteron changes as an indicator of stress in rodent blood. During the experiment, it was found that the most significant increase is observed at frequencies 13, 16 pps and at 22, 8 pps a decrease and a slight increase in corticosteron were recorded respectively
Metalliferous coals of coals of Azey deposit in Irkutsk coal basin
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ ΠΏΠΎΠΈΡΠΊΠ° Π½ΠΎΠ²ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΡΠ΅Π½Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΡ
ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΈΡ
ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΠ³Π»ΠΈ ΠΈ Π·ΠΎΠ»Ρ ΡΠ³Π»Π΅ΠΉ. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠ³Π»Π΅ΠΉ ΠΈ ΡΠΎΡΠΌ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΡΠ³Π»ΡΡ
ΠΈ Π·ΠΎΠ»Π°Ρ
ΡΠ³Π»Π΅ΠΉ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ½ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ³ΠΎΠ»ΡΠ½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ½ΠΎΡΠ½ΡΡ
ΡΠ³Π»Π΅ΠΉ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΏΠΎ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π½Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². ΠΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ ΡΠ΅Π½Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΠ·Π΅ΠΉΡΠΊΠΎΠ΅ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΡΠ΄Π° ΡΠ΅Π½Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎ Π·Π½Π°ΡΠΈΠΌΡΡ
ΡΡΠ΄Π½ΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ: Π²ΡΡΠ²ΠΈΡΡ Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΈ ΡΠΎΡΠΌΡ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²-ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ Π² ΡΠ³Π»ΡΡ
, Π·ΠΎΠ»Π°Ρ
ΡΠ³Π»Π΅ΠΉ ΠΈ Π½Π΅ΡΠ³ΠΎΠ»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ»ΠΎΡΡ
ΡΠ³ΠΎΠ»ΡΠ½ΡΡ
ΠΏΠ»Π°ΡΡΠΎΠ² ΠΠ·Π΅ΠΉΡΠΊΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ. ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠ³Π»ΠΈ ΠΈ ΡΠ³Π»Π΅Π²ΠΌΠ΅ΡΠ°ΡΡΠΈΠ΅ ΠΏΠΎΡΠΎΠ΄Ρ ΠΠ·Π΅ΠΉΡΠΊΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΡΠΊΡΡΡΠΊΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΠΉΠ½Π°. ΠΠ΅ΡΠΎΠ΄Ρ: ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ Π½Π΅ΠΉΡΡΠΎΠ½Π½ΠΎ-Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΎΠ½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ·, ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎ-ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ, ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠ°Π·ΠΎΠ²ΡΠΉ Π°Π½Π°Π»ΠΈΠ·, ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ Ρ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ, ΠΎΠ·ΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ± Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π·ΠΎΠ»ΡΠ½ΠΎΡΡΠΈ ΠΈ Π²Π»Π°ΠΆΠ½ΠΎΡΡΠΈ, ΡΠΊΡΡΡΠ°Π³ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΈΡΡΠΌΠΎΠ² ΠΈ Π³ΡΠΌΠΈΠ½ΠΎΠ²ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΡΠ²Π»Π΅Π½ΠΎ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ³Π»Π΅ΠΉ ΠΠ·Π΅ΠΉΡΠΊΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ΄ΠΎΠΌ ΡΠ΅Π΄ΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²-ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ (REE, Sc, Zr, Hf, Ta, Th), Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΈΠ³ΡΠ°Π΅Ρ ΠΏΠΈΡΠΎΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΊΠ°ΠΊ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠΎΡΠΈΡ, ΡΠ°Π½ΡΠ°Π»Π°, ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΈ Π³Π°ΡΠ½ΠΈΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠ³Π»ΠΈ ΠΈΠ· Π·ΠΎΠ½Ρ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π°Π½ΠΎΠΌΠ°Π»ΡΠ½ΠΎ Π²ΡΡΠΎΠΊΠΈΠΌΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΠΌΠΈ ΡΠ΅Π΄ΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ (REE, Sc, Cr, Co, Au), ΠΏΡΠΈΠΏΠΎΡΠ²Π΅Π½Π½ΡΠ΅ Π·ΠΎΠ½Ρ ΡΠ³ΠΎΠ»ΡΠ½ΡΡ
ΠΏΠ»Π°ΡΡΠΎΠ² ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½Ρ ΡΡΠΆΠ΅Π»ΡΠΌΠΈ ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ, Sc, Co, Sb, Ta, Hf, Ba. ΠΡΡΠ²Π»Π΅Π½ΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠ°ΠΌΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΈΠ½ΡΠ΅ΡΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π² ΡΠ³Π»ΡΡ
. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΠΌΠ°Π»ΠΎΡΠ΅ΡΠ½ΠΈΡΡΡΡ
ΡΠ³Π»ΡΡ
(~0,5 %) Ρ Π½ΠΈΠ·ΠΊΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΡΠ»ΡΡΠΈΠ΄Π½ΠΎΠΉ ΡΠ΅ΡΡ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΠ°ΠΌΠΎΡΠΎΠ΄Π½ΡΠ΅ ΡΠΎΡΠΌΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²-Ρ
Π°Π»ΡΠΊΠΎΡΠΈΠ»ΠΎΠ². ΠΡΠ΅Π³ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΡΠ²ΡΡΠ΅ 80 ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²-ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΌΠΎΠ½Π°ΡΠΈΡ, Π±Π°ΡΡΠ½Π΅Π·ΠΈΡ, ΡΠΈΡΠΊΠΎΠ½, Π±Π°Π΄Π΄Π΅Π»Π΅ΠΈΡ, ΡΠ°ΠΌΠΎΡΠΎΠ΄Π½ΡΠ΅ ΠΈ ΠΈΠ½ΡΠ΅ΡΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΈ Ρ. Π΄.The relevance of the research is caused by the need to find new sources of valuable elements that determine the development of modern innovative economy. Coals and ashes of coals are considered as their perspective source. The study of geochemical characteristics of coal and modes of occurrence of chemical elements in coals and ashes of the coals is required for estimation of metal content in coal deposits and development of the criteria for detecting metalliferous coals and techniques for extraction of valuable elements. A promising source of valuable elements is Azeyskoe deposit, where the content of a number of valuable elements reaches possible industrially important ore concentrations. The main aim of the research is to study the geochemical characteristics and modes of occurrence of impurity elements in coals, coal ashes and noncoal intercalations in coal seams of Azeyskoe deposit. Objects of the research are coal and coal bearing rocks of Azeyskoe deposit of Irkutsk basin. Methods: instrumental neutron activation analysis, mass spectrometry method with inductively coupled plasma, x/ray phase analysis, scanning electron microscopy with x/ray spectral analysis, ashing with determination of ash content and humidity, extraction of bitumen and humic acids. Results. The authors have determined the enrichment of Azeiskoe deposit coals with a number of rare impurity elements (REE, Sc, Zr, Hf, Ta, Th). Pyroclastic material as a source of rare earth elements, thorium, tantalum, zirconium and hafnium, is very important in this enrichment. It was determined that the coals in oxidation zone are characterized by anomalously high concentrations of rare impurity elements (REE, Sc, Cr, Co, Au), bottom formation zones of coal seams are enriched with heavy rare earth elements, Sc, Co, Sb, Ta, Hf, Ba. Presence of native and intermetallic mineralization in coals is revealed. It is established that in low/sulfur coals (~0,5 %) with a low content of sulfide sulfur native forms of elements-chalcophiles prevail. In total, more than 80 mineral forms of impurity elements, including monazite, bastnezite, zircon, baddeleyite, native and intermetallic compounds, etc., were found out
Waste walnut shell valorization to iron loaded biochar and its application to arsenic removal
Iron loaded biochar (ILB) was prepared from waste walnut shell by microwave pyrolysis and its application for arsenic removal was attempted. The ILB was characterized using X-ray diffraction, scanning electron microscopy and BET Surface area analyzer. The adsorption isotherm of As (V) in ILB covering a temperature range of 25 to 45βΒ°C, as well as the kinetics of adsorption at 25βΒ°C were experimentally generated. The adsorption isotherms were modeled using Langmuir and Freundlich isotherm models, while the kinetics of adsorption was modeled using the pseudo-first-order, pseudo-second-order kinetic models, and intra particle diffusion model. The ILB had a surface area of 418βm2/g with iron present in the form of hematite (Fe2O3) and magnetite (Fe3O4). The arsenic adsorption isotherm matches well with Langmuir isotherm model with a monolayer adsorption capacity of 1.91βmg/g at 25βΒ°C. The adsorption capacity of As (V) well compares with other porous adsorbents widely reported in literature, supporting its application as a cost effective adsorbent
ΠΡΠ΅Π½ΠΊΠ° ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΈΡ Π±Π°Π½ΠΊΠΎΠ² Π ΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ Π€Π΅Π΄Π΅ΡΠ°ΡΠΈΠΈ
Banking system occupies one of the top positions in the economy. In this paper we developed a model for assessing the financial stability of commercial banks. The result of this research can be used by auditors and bank clients