10 research outputs found

    Scaling theory of the Mott-Hubbard metal-insulator transition in one dimension

    Full text link
    We use the Bethe ansatz equations to calculate the charge stiffness Dc=(L/2)d2E0/dΦc2Φc=0D_{\rm c} = (L/2) d^2 E_0/d\Phi_{\rm c}^2|_{\Phi_{\rm c}=0} of the one-dimensional repulsive-interaction Hubbard model for electron densities close to the Mott insulating value of one electron per site (n=1n=1), where E0E_0 is the ground state energy, LL is the circumference of the system (assumed to have periodic boundary conditions), and (c/e)Φc(\hbar c/e)\Phi_{\rm c} is the magnetic flux enclosed. We obtain an exact result for the asymptotic form of Dc(L)D_{\rm c}(L) as LL\to \infty at n=1n=1, which defines and yields an analytic expression for the correlation length ξ\xi in the Mott insulating phase of the model as a function of the on-site repulsion UU. In the vicinity of the zero temperature critical point U=0, n=1n=1, we show that the charge stiffness has the hyperscaling form Dc(n,L,U)=Y+(ξδ,ξ/L)D_{\rm c}(n,L,U)=Y_+(\xi \delta, \xi/L), where δ=1n\delta =|1-n| and Y+Y_+ is a universal scaling function which we calculate. The physical significance of ξ\xi in the metallic phase of the model is that it defines the characteristic size of the charge-carrying solitons, or {\em holons}. We construct an explicit mapping for arbitrary UU and ξδ1\xi \delta \ll 1 of the holons onto weakly interacting spinless fermions, and use this mapping to obtain an asymptotically exact expression for the low temperature thermopower near the metal-insulator transition, which is a generalization to arbitrary UU of a result previously obtained using a weak- coupling approximation, and implies hole-like transport for 0<1nξ10<1-n\ll\xi^{-1}.Comment: 34 pages, REVTEX (5 figures by request
    corecore