10 research outputs found

    The effect of acid demineralising bituminous coals and de-ashing the respective chars on nitrogen functional forms

    Get PDF
    An opportunity presented itself to compare changes in nitrogen functional forms brought by the acid treatment of South African bituminous coals and their respective chars. X-ray photoelectron spectroscopy (XPS) was used to determine functional forms of the raw coals, acid-treated coals, respective chars prepared at 740 and 980 °C in a bench-scale fluidised-bed (FB), and at 1000 and 1400 °C in a drop-tube furnace (DTF), as well as their corresponding de-ashed remnants. The XPS N 1s spectra for the raw coals were typically similar to previous widely reported bituminous coals, of which pyrrolic nitrogen was the predominant form of organically bound nitrogen, followed by pyridinic and quaternary nitrogen. In pyrolysed chars, quaternary nitrogen was the dominant form followed by pyridinic, pyrrolic and protonated-/oxidised heterocyclic nitrogen forms respectively. Nonetheless, XPS N 1s analysis for DTF severely pyrolysed chars (1000 and 1400 °C) prepared from high ash and vitrinite-rich coal, and also a char (1400 °C) from a relatively low ash and inertinite-rich coal, gave a spectra with only two sub-peaks corresponding to quaternary and pyridinic nitrogen. It seems that the HCl/HF/HCl sequential demineralising/de-ashing process had no effect on the nitrogen functional forms of raw coals and the entire chars prepared from the FB. De-ashing of DTF severely pyrolysed chars emanating from high ash and inertinite-rich coal exhibited no marked change to the nitrogen functional forms. However, acid treatment of DTF chars derived from a high ash and vitrinite-rich coal, a char from relatively low ash and inertinite-rich coal, which initially contained pyridinic and quaternary nitrogen resulted in additional nitrogen moieties of pyrrolic and protonated/oxidised nitrogen

    Recent Advances in Membrane-Based Electrochemical Hydrogen Separation: A Review

    No full text
    In this paper an overview of commercial hydrogen separation technologies is given. These technologies are discussed and compared—with a detailed discussion on membrane-based technologies. An emerging and promising novel hydrogen separation technology, namely, electrochemical hydrogen separation (EHS) is reviewed in detail. EHS has many advantages over conventional separation systems (e.g., it is not energy intensive, it is environmentally-friendly with near-zero pollutants, it is known for its silent operation, and, the greatest advantage, simultaneous compression and purification can be achieved in a one-step operation). Therefore, the focus of this review is to survey open literature and research conducted to date on EHS. Current technological advances in the field of EHS that have been made are highlighted. In the conclusion, literature gaps and aspects of electrochemical hydrogen separation, that require further research, are also highlighted. Currently, the cost factor, lack of adequate understanding of the degradation mechanisms related to this technology, and the fact that certain aspects of this technology are as yet unexplored (e.g., simultaneous hydrogen separation and compression) all hinder its widespread application. In future research, some attention could be given to the aforementioned factors and emerging technologies, such as ceramic proton conductors and solid acids

    The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation

    No full text
    This paper describes an experimental evaluation and comparison of Pt/C and Pt-Ru/C electrocatalysts for high-temperature (100–160 °C) electrochemical hydrogen separators, for the purpose of mitigating CO poisoning. The performances of both Pt/C and Pt-Ru/C (Pt:Ru atomic ratio 1:1) were investigated and compared under pure hydrogen and a H2/CO gas mixture at various temperatures. The electrochemically active surface area (ECSA), determined from cyclic voltammetry, was used as the basis for a method to evaluate the performances of the two catalysts. Both CO stripping and the underpotential deposition of hydrogen were used to evaluate the electrochemical surface area. When the H2/CO gas mixture was used, there was a complex overlap of mechanisms, and therefore CO peak could not be used to evaluate the ECSA. Hence, the hydrogen peaks that resulted after the CO was removed from the Pt surface were used to evaluate the active surface area instead of the CO peaks. Results revealed that Pt-Ru/C was more tolerant to CO, since the overlapping reaction mechanism between H2 and CO was suppressed when Ru was introduced to the catalyst. SEM images of the catalysts before and after heat treatment indicated that particle agglomeration occurs upon exposure to high temperatures (>100 °C

    Release of nitrogenous volatile species from South African bituminous coals during pyrolysis

    No full text
    The influence of typical South African coal attributes on the release of nitrogen into the volatile stream during pyrolysis was studied by utilizing three bituminous coals. The majority of South African coals are characterized by high mineral matter and are rich in inertinite maceral. Pyrolysis was conducted in a bench-scale fluidized bed (FB) at 740–980 °C, and also in a drop-tube furnace (DTF) at 1000–1400 °C. Levels of nitrogenous species in the volatile stream in the form of NH3, HCN, and tar-N were determined. Nitrogen functional forms of tars released at low temperatures were predominantly distinguished by high levels of pyrrolic nitrogen, followed by pyridinic and quaternary nitrogen, respectively. Tars liberated at 740 °C possessed similar nitrogen functional form attributes as those of parent coals. However, an increase in pyrolysis temperature caused a gradual increase in quaternary nitrogen as well as a concurrent decrease in pyrrolic nitrogen and a concomitant subtle decrease in pyridinic nitrogen. The analysis of nitrogen in tars was only confined to tars extracted from the FB. Vitrinite-rich and/or high mineral matter coal released high yields of nitrogenous species into the volatile stream at low FB temperatures. A large amount of NH3 was released relative to HCN under FB pyrolysis conditions. However, more HCN was released than NH3 during DTF pyrolysis. Two coals, one characterized by high mineral matter and being rich in vitrinite, and the other distinguished by relatively low mineral matter and being rich in inertinite, behaved similarly by reaching respective peak amounts of NH3 yields at 820 °C under FB pyrolysis conditions. On the contrary, an opposite profile displaying a slump at 820 °C was observed for HCN yields from the two respective coals. The third coal, a high mineral matter and inertinite-rich coal, released high NH3 yields and simultaneously the least HCN yields at 740 °C. Under DTF experimental conditions, both NH3 and HCN steadily increased with temperature in all coals. The low mineral matter and inertinite-rich coal released high yields of total volatile-N from 1000 to 1270 °C, only to be surpassed by the vitrinite-rich/high mineral matter coal at 1400 °C. The inertinite-rich/high mineral matter coal released the least throughout the entire DTF temperature range. The total mineral matter content of the coals played a significant role toward the nitrogen product distribution. On the other hand, the total reactive macerals also influenced the emission of volatile species at 1130–1400 °C DTF temperature range. The yields and composition of the released nitrogenous species have been attributed to a combination of mineral matter content, petrographic properties of the parent coals, and the utilized conditions. Pyrolysis temperature, coal particle size, and residence time also play a significant role toward the yields and composition of the released nitrogenous specie

    Modeling the Nonisothermal Devolatilization Kinetics of Typical South African Coals

    No full text
    Multicomponent model fitting was conducted in order to evaluate the devolatilization rate behavior of four typical South African coals, with the aid of nonisothermal thermogravimetry. Rate evaluation was conducted at four different heating rates (5, 10, 25, and 40 K/min) by heating the samples under an inert N<sub>2</sub> atmosphere to 950 °C. Evaluation of the kinetic parameters of each coal involved the numerical regression of nonisothermal rate data in MATLAB 7.1.1 according to a pseudocomponent modeling philosophy. The number of pseudocomponents used ranged between three and eight, as larger values induced the risk of over fitting. Quality of fit (<i>QOF</i>) was found to decrease with decreasing heating rate as a result of improved separation of the individual component reactions at the lower heating rates. All four coals showed the occurrence of similar pseudocomponent reactions, although significant differences were observed in the fractional contributions of the different pseudocomponents to the overall reaction rates. Modeling results indicated that the assumption of eight pseudocomponents produced the lowest <i>QOF</i> values and subsequently the best fit to the devolatilization profiles of each coal. For the vitrnite-rich coals (G#5 and TSH), no remarkable decrease in <i>QOF</i> could be observed after 6 pseudocomponent reactions, suggesting that even 6 or 7 pseudocomponent reactions would have provided accurate experimental predictions. Activation energies determined from the selected number of pseudocomponents (between 3 and 8) were found to range between 20 and 250 kJ/mol
    corecore