38 research outputs found

    Dealing with development risk and complexity in planning situations within product engineering processes

    Get PDF
    Every product development process is unique and individual. Nevertheless, patterns of recurring and similar elements exist in different processes which experience specific characteristics depending on the type of project. In addition to the different objectives that form the basis of a product development process, projects differ primarily in their share of new development and their degree of complexity. In order to deal appropriately with the resulting uncertainty, implementing agile approaches in processes of mechatronic system development is becoming more popular with the aim of making the development project more flexible. However, it must be borne in mind that not every development process requires an agile approach. Although plan-driven approaches have a poor ability to react to changes, they provide clear structure that leads to a common understanding of the process and a clear definition of objectives. Since a development project does not only contain problems that are well-suited for an agile or a sequential approach it is important to adapt the process to the underlying situation and requirements. In sufficiently plannable situations a purely agile approach would entail the loss of structure. On the other hand, a purely sequential approach for highly uncertain problems means that the process has to be adapted frequently in order to react appropriately to changes and newly acquired knowledge. The approach of ASD – Agile Systems design helps developers to implement suitable development procedures at different process levels depending on the degree of planning stability. In this context, this contribution presents a methodology that examines the influence of new development and complexity on different elements and supports developers in process planning by combining flexible and structuring elements to avoid multiple replanning

    A guideline for modelling relations of embodiment and function in agile development

    Get PDF
    Abstract In current product development, the increased usage of agile approaches from software development is observable. With these approaches, improved responsiveness of developer teams to the dynamics of today's markets is desired. However, the gain of technical knowledge in these approaches has so far received little support, leading to difficulties in implementation in engineering design projects that deal with physical product aspects. This contribution aims to provide a guideline to gain technical knowledge about physical products in agile processes through the usage of qualitative modelling of embodiment function relations. This guideline is developed by integrating and adapting the Contact and Channel approach into the agile approach Agile Systems Design. It aims at aiding the evolutionary and iterative development in rapid cycles through fractal modelling of qualitative technical knowledge. The guideline is applied in two development projects. It shows potential to support developer teams by providing different aspects of the Contact and Channel approach in different phases of agile projects, depending on the tackled task
    corecore