7,275 research outputs found
Physics-based analysis of Affymetrix microarray data
We analyze publicly available data on Affymetrix microarrays spike-in
experiments on the human HGU133 chipset in which sequences are added in
solution at known concentrations. The spike-in set contains sequences of
bacterial, human and artificial origin. Our analysis is based on a recently
introduced molecular-based model [E. Carlon and T. Heim, Physica A 362, 433
(2006)] which takes into account both probe-target hybridization and
target-target partial hybridization in solution. The hybridization free
energies are obtained from the nearest-neighbor model with experimentally
determined parameters. The molecular-based model suggests a rescaling that
should result in a "collapse" of the data at different concentrations into a
single universal curve. We indeed find such a collapse, with the same
parameters as obtained before for the older HGU95 chip set. The quality of the
collapse varies according to the probe set considered. Artificial sequences,
chosen by Affymetrix to be as different as possible from any other human genome
sequence, generally show a much better collapse and thus a better agreement
with the model than all other sequences. This suggests that the observed
deviations from the predicted collapse are related to the choice of probes or
have a biological origin, rather than being a problem with the proposed model.Comment: 11 pages, 10 figure
The Metaphysics of Paul Weiss
This thesis is an exposition of the metaphysical position set down by Paul Weiss in his Modes of Being. It is written in answer to the question, How is it that there are four irreducible modes of being as held by Paul Weiss? While the bulk of material with which this thesis deals derives directly from Modes of Being, several of Weiss\u27 central arguments in support of his position were taken from an earlier work, Reality, written in 1939. The fundamental metaphysical positions of both works are compatible with one another
Dynamics of the Pionium with the Density Matrix Formalism
The evolution of pionium, the hydrogen-like atom, while passing
through matter is solved within the density matrix formalism in the first Born
approximation. We compare the influence on the pionium break-up probability
between the standard probabilistic calculations and the more precise picture of
the density matrix formalism accounting for interference effects. We focus our
general result in the particular conditions of the DIRAC experiment at CERN.Comment: 14 pages, 2 figures, submitted to J. Phys. B: At. Mol. Phy
- …