231 research outputs found

    Climate variability and El Niño Southern Oscillation: implications for natural coastal resources and management

    No full text
    The El Niño Southern Oscillation (ENSO) significantly influences marine ecosystems and the sustained exploitation of marine resources in the coastal zone of the Humboldt Current upwelling system. Both its warm (El Niño: EN) and cold (La Niña: LN) phase have drastic implications for the ecology, socio-economy and infrastructure along most of PaciWc South America. Local artisanal fisheries, which especially suffer from the effects of EN, represent a major part for the domestic economy of Chile and Peru and in consequence a huge amount of published and unpublished studies exists aiming at identifying effects of EN and LN. However, most processes and underlying mechanisms fostering the ecology of organisms along Pacific South America have not been analyzed yet and for the marine realm most knowledge is traditionally based on rather descriptive approaches. We herein advocate that small-scale comparative and interdisciplinary process studies work as one possible solution to understand better the variability observed in EN/LN effects at local scale. We propose that differences in small-scale impacts of ENSO along the coast rather than the macro-ecological and oceanographic view are essential for the sustainable management of costal ecosystems and the livelihood of the people depending on it. Based on this, we summarize the conceptual approach from the EU-funded International Science and Technology Cooperation (INCO) project “Climate variability and El Niño Southern Oscillation: Implications for Natural Coastal Resources and Management (CENSOR)” that aims at enhancing the detection, compilation, and understanding of EN and LN effects on the coastal zone and its natural resources. We promote a multidisciplinary avenue within present international funding schemes, with the intention to bridge the traditional gap between basic and applied coastal research. The long-term aim is an increased mitigation of harm caused by EN as well as a better use of beneficial effects, with the possibility to improve the livelihood of human coastal populations along Pacific South America and taking differences between local socio-economic structures of the countries affected by EN into consideration. The success of such an approach however, does finally rely upon a willingness of the recourse users and the various political and economic stakeholders involved to taking on the message as part of sustainable management strategies

    Environmental stress and parasitism as drivers of population dynamics of Mesodesma donacium at its northern biogeographic range

    Get PDF
    Abstract Riascos, J. M., Heilmayer, O., Oliva, M. E., and Laudien, J. 2011. Environmental stress and parasitism as drivers of population dynamics of Mesodesma donacium at its northern biogeographic range. – ICES Journal of Marine Science, 68: 823–833. Mesodesma donacium is a commercially important bivalve in Chile and Peru. During strong El Niño events, populations at the northern end of its geographic distribution are wiped out, so to understand its threshold responses to biotic and abiotic factors, the population dynamics of one of the northernmost population remnants was analysed between 2005 and 2007. Strong interannual differences were found in abundance, body mass, growth rate, somatic production, and the prevalence of the parasite Polydora bioccipitalis. A Spearman rank correlation analysis showed that changes in beach slope, seemingly linked to repeated storm surges, negatively affected the clam's abundance and seemingly also affected growth, mortality, body mass somatic production, and parasite prevalence. Infestation by P. bioccipitalis was restricted to adult clams. Juvenile clams suffered high mortality because they inhabit the intertidal zone, where wave action is strong. Larger clams also showed high mortality, which seemed best explained by a synergistic effect of parasite load and environmental stress. This parasite-climate-driven mortality of larger clams had a strong impact on somatic production and implied a dramatic loss of fecundity (82%), which may significantly affect the ability of the species to recover its former abundance and distribution.</jats:p

    Physiological capacity of Cancer setosus larvae — Adaptation to El Niño Southern Oscillation conditions

    Get PDF
    Temperature changes during ENSO challenge the fauna of the Pacific South American coast. In many ectotherm benthic species pelagic larvae are the most important dispersal stage, which may, however, be particularly vulnerable to such environmental stress. Thermal limitation in aquatic ecotherms is hypothesized to be reflected first in the aerobic scope of an animal. Here we present results on whole animal oxygen consumption and on the activities of two metabolic key enzymes, citrate synthase (CS) and pyruvate kinase (PK)) of Cancer setosus zoeal larvae, acclimated to different temperatures. Larvae acclimated to cooler temperatures (12 and 16 °C) were able to compensate for the temperature effect as reflected in elevated mass specific respiration rates (MSR) and enzyme activities. In contrast, warm acclimated larvae (20 and 22 °C) seem to have reached their upper thermal limits, which is reflected in MSR decoupling from temperature and low Q10 values (Zoea I: 1.4; Zoea III: 1.02). Thermal deactivation of CS in vitro occurred close to habitat temperature (between 20 and 24 °C), indicating instability of the enzyme close to in vivo thermal limits. The capacity of anaerobic metabolism, reflected by PK, was not influenced by temperature, but increased with instar, reflecting behavioral changes in larval life style. Functioning of the metabolic key enzyme CS was identified to be one possible key for larval limitation in temperature tolerance

    Distribution and composition of macrobenthic communities along a Victoria-Land Transect (Ross Sea, Antarctica)

    Get PDF
    The Victoria-Land Transect project onboard the Italian research vessel ‘‘Italica’’ in February 2004, was a large-scale attempt to obtain benthic samples of smaller macrozoobenthic specimens systematically along a latitudinal and a depth transect along the Victoria- Land coast. Data presented from this survey are based on Rauschert dredge samples, which were taken at four areas at depth ranging from 84 to 515 m. A cluster analysis based on relative numbers of abundance was performed and demonstrated a change in community structure depending on the location along the latitudinal transect. A change in community structure with depth was not recorded. Dominant taxa of the Ross Sea fauna along the Victoria-Land coast were the Arthropoda (65.7%), followed by Annelida (20.7%), Mollusca (9.6%) and Echinodermata (2.5%). Total number of abundance decreased with depth with an exception at Cape Russell, whereas a trend in biomass was not documented. Abundance and biomass proportions of major taxa changed gradually along the latitudinal transect

    Metabolic rate and growth in the temperate bivalve Mercenaria mercenaria at a biogeographic limit, from the English Channel

    No full text
    Metabolism and growth rate of the hard clam, Mercenaria mercenaria, were investigated in a population invasive to Southampton Water, southern England. An individual metabolic model expressed as a function of soft tissue dry mass was fitted to data of 18 individuals (log (VO2) = −1.952 + 0.543 • log (DM); F1,16 = 201.18, P &lt; 0.001, r2 = 0.926). A von Bertalanffy growth function was fitted to 227 size-at-age data pairs of 18 individuals (Ht = 80.13 • (1 − e−0.149 • (t−0.542)); r2 = 0.927). Individual age-specific somatic production was calculated, demonstrating increase with age to a maximum of 3.88 kJ y−1 at ten years old followed by decrease, and individual age-specific annual respiration was calculated, demonstrating asymptotic increase with age to 231.37 kJ y−1 at 30 years old. Results found here lie within the physiological tolerances reported across the biogeographical range, suggesting that the species' biogeographical limitation in the UK to Southampton Water results from ecological rather than physiological factors

    Physiological ageing in a polar and a temperate swimming scallop

    No full text
    We compared physiological ageing parameters in 2 scallops, the temperate Aequipecten opercularis and the Antarctic Adamussium colbecki. These 2 species are phylogenetically closely related and display a similar lifestyle but have distinctly different maximum lifespans (MLSP). A. opercularis does not live longer than 8 to 10 yr, whereas A. colbecki lives over 18 yr. The development of several physiological ageing parameters over time, chosen according to the ‘free radical theory of ageing‘, was compared in the 2 species to identify differences in the ageing process. In the shorter-lived A. opercularis, activities of the mitochondrial enzymes citrate synthase and cytochrome c oxidase and of the antioxidant enzyme catalase showed a more pronounced decrease with increasing age than in the longer-lived A. colbecki. In line with this finding, lipofuscin accumulation increased more distinctly in A. opercularis than in A. colbecki, while tissue protein content decreased in A. opercularis but increased in A. colbecki. Its better preservation of mitochondrial and antioxidant enzyme activities and the avoidance of waste accumulation may enable A. colbecki to live longer than A. opercularis. Mitochondrial function investigated in A. opercularis showed only minor changes with age, and mitochondrial H2O2 generation rates were low at all ages. We relate our findings to the ‘free radical–rate of living’ theory, to the ‘uncoupling to survive‘ hypothesis, and to the particular lifestyle of these scallops

    Temperature effects on zoeal morphometric traits and intraspecific variability in the hairy crab Cancer setosus across latitude

    No full text
    International audiencePhenotypic plasticity is an important but often ignored ability that enables organisms, within species-specific physiological limits, to respond to gradual or sudden extrinsic changes in their environment. In the marine realm, the early ontogeny of decapod crustaceans is among the best known examples to demonstrate a temperature-dependent phenotypic response. Here, we present morphometric results of larvae of the hairy crab , the embryonic development of which took place at different temperatures at two different sites (Antofagasta, 23°45′ S; Puerto Montt, 41°44′ S) along the Chilean Coast. Zoea I larvae from Puerto Montt were significantly larger than those from Antofagasta, when considering embryonic development at the same temperature. Larvae from Puerto Montt reared at 12 and 16°C did not differ morphometrically, but sizes of larvae from Antofagasta kept at 16 and 20°C did, being larger at the colder temperature. Zoea II larvae reared in Antofagasta at three temperatures (16, 20, and 24°C) showed the same pattern, with larger larvae at colder temperatures. Furthermore, larvae reared at 24°C, showed deformations, suggesting that 24°C, which coincides with temperatures found during strong EL Niño events, is indicative of the upper larval thermal tolerance limit.   is exposed to a wide temperature range across its distribution range of about 40° of latitude. Phenotypic plasticity in larval offspring does furthermore enable this species to locally respond to the inter-decadal warming induced by El Niño. Morphological plasticity in this species does support previously reported energetic trade-offs with temperature throughout early ontogeny of this species, indicating that plasticity may be a key to a species' success to occupy a wide distribution range and/or to thrive under highly variable habitat conditions

    Life in a warm deep sea: routine activity and burst swimming performance of the shrimp Acanthephyra eximia in the abyssal Mediterranean

    Get PDF
    Measurements of routine swimming speed, "tail-flip'' escape responses, and oxygen consumptions were made of the deep-sea shrimp Acanthephyra eximia using autonomous landers in the Rhodos Basin at depths of up to 4,400 m and temperatures of 13 - 14.5 degrees C. Routine swimming speeds at 4,200 m averaged 0.18 m s(-1) or 3.09 body lengths s(-1), approximately double those of functionally similar oceanic scavengers. During escape responses peak accelerations of 23 m s(-2) or 630.6 body lengths s(-2) were recorded, with animals reaching speeds of 1.61 m s(-1) or 34.8 body lengths s(-2). When compared to shallow-water decapods at similar temperatures these values are low for a lightly calcified shrimp such as A. eximia despite a maximum muscle mass specific power output of 90.0 W kg(-1). A preliminary oxygen consumption measurement indicated similar rates to those of oceanic crustacean scavengers and shallower-living Mediterranean crustaceans once size and temperature had been taken into account. These animals appear to have high routine swimming speeds but low burst muscle performances. This suite of traits can be accounted for by high competition for limited resources in the eastern Mediterranean, but low selective pressure for burst swimming due to reductions in predator pressure

    On the chemistry of stable alpha-oxoketenes

    Get PDF
    This short review describes the preparation and chemistry of sterically stabilized α-oxoketenes, which can be isolated and handled as true neat compounds. Their reactions with dienophiles afford [4+2] - as well as [2+2] cycloadducts depending on their ability to adopt that conformation suitable for each type of cycloaddition reactions. Addition of nucleophiles leads either to dipivaloylacetic acid derivatives as expected products or to the rare molecular skeleton of mono-or bifunctionalized bridged bisdioxines, which exhibit axial chirality. The bifunctionalized derivatives may serve as novel spacer units in several macrocyclic systems

    Stable isotope (δ18O and δ13C) sclerochronology of Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis puzosiana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): Evidence of palaeoclimate, water depth and belemnite behaviour

    Get PDF
    Incremental δ18O and δ13C signals were obtained from three well-preserved specimens of Cylindroteuthis puzosiana and from three well-preserved specimens of Gryphaea (Bilobissa) dilobotes from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England). Through-ontogeny (sclerochronological) δ18O data from G. (B.) dilobotes appear to faithfully record seasonal temperature variations in benthic Callovian waters of the study area, which range from c. 14 °C to c. 17 °C (arithmetic mean temperature c. 15 °C). Water depth is estimated to have been in the region of c. 50 m, based upon comparisons between these data, previously published non-incremental sea surface δ18O values, and a modern analogue situation. Productivity in Callovian waters was comparable with that in modern seas, based upon δ13C data from G. (B.)dilobotes, with 13C depletion occurring during warmer periods, possibly related to an interaction between plankton blooms and intra-annual variations in mixing across a thermocline. Incremental δ18O data from C.puzosiana provide temperature minima of c.11 °C for all specimens but with maxima varying between c.14 °C and c.16 °C for different individuals (arithmetic mean values c. 13 °C). Temperatures for late ontogeny, when the C. puzosiana individuals must have been living close to the study site and hence the analysed specimens of G. (B.) dilobotes, are closely comparable to those indicated by the latter. However, for significant portions of ontogeny C. puzosiana experienced temperatures between c. 2 °C and c. 3 °C cooler than the winter minimum as recorded by co-occurring G. (B.) dilobotes. Comparisons with modern seas suggest that descent to a depth of c. 1000 m would be necessary to explain such cool minimum temperatures. This can be discounted due to the lack of deep waters locally and due to estimates of the depth tolerance of belemnites. The most likely cause of cool δ18O signals from C. puzosiana is a cosmopolitan lifestyle including migration to more northerly latitudes. Mean δ13C values from C. puzosiana are comparable with those from G.(B.)dilobotes. However, the incrementally acquired data are highly variable and probably influenced by metabolic effects.The probable identification of migratory behaviour in C. puzosiana calls into question the reliability of some belemnite species as place-specific palaeoenvironmental archives and highlights the benefits of adopting a sclerochronological approach
    corecore