4 research outputs found

    Probing Coherent Surface Plasmon Polariton Propagation Using Ultrabroadband Spectral Interferometry

    No full text
    Surface plasmon polaritons (SPPs) are short-lived evanescent waves that can confine light at the surface of metallic nanostructures and transport energy over mesoscopic distances. They may be used to generate and process information encoded as optical signals to realize nanometer-scale and ultrafast all-optical circuitry. The propagation properties of these SPPs are defined by the geometry and composition of the nanostructure. Due to their short, femtosecond lifetimes, it has so far proven difficult to track this propagation in the time domain and to directly study the effect of the propagation on the shape of a coherent SPP wavepacket. Here, we introduce an ultrabroadband far-field spectral interferometry method, allowing for the reconstruction of the plasmonic field in the time domain, to characterize coherent SPP propagation in metallic nanostructures. Group velocity and dispersion of SPPs are determined with high precision in a broad frequency range in the visible and near-infrared region, and the propagating SPP field is tracked with high time resolution over distances of tens of micrometers. Our results shed new light on the interplay between nanostructure geometry and coherent SPP propagation and hence are important for probing plasmonā€“matter interactions as well as for implementations of ultrafast plasmonic circuitry

    Spotlight on Excitonic Coupling in Polymorphic and Textured Anilino Squaraine Thin Films

    No full text
    Structural diffraction analysis of an anilino squaraine with <i>branched</i> isobutyl side chains shows crystallization into two polymorphic structures in the bulk and in spin-casted thin films. We observe multipeaked and pleochroic absorption spectra being blue-(red)-shifted for the monoclinic (orthorhombic) polymorph. We understand the packing as Coulombic molecular H-(J)-aggregates supporting Davydov splitting. Pictures of projected Davydov components in oriented thin films fit well to polarization resolved spectro-microscopy and crossed-polarized light microscopy investigations. By comparison with literature on anilino squaraines with <i>linear</i> alkyl side chains, we point out a general trend for steering the thin film excitonic properties by simple side chain and/or processing condition variation. Combined with the ability to locally probe the direction of transition dipole moments, this adds value to the rational design of functional thin films for optoelectronic applications, especially envisioning ultrastrong lightā€“matter interactions

    Suppression of Radiative Damping and Enhancement of Second Harmonic Generation in Bullā€™s Eye Nanoresonators

    No full text
    We report a drastic increase of the damping time of plasmonic eigenmodes in resonant bullā€™s eye (BE) nanoresonators to more than 35 fs. This is achieved by tailoring the groove depth of the resonator and by coupling the confined plasmonic field in the aperture to an extended resonator mode such that spatial coherence is preserved over distances of more than 10 Ī¼m. Experimentally, this is demonstrated by probing the plasmon dynamics at the field level using broadband spectral interferometry. The nanoresonator allows us to efficiently concentrate the incident field inside the central aperture of the BE and to tailor its local optical nonlinearity by varying the aperture geometry. By replacing the central circular hole with an annular ring structure, we obtain 50-times higher second harmonic generation efficiency, allowing us to demonstrate the efficient concentration of long-lived plasmonic modes inside nanoapertures by interferometric frequency-resolved autocorrelation. Such a light concentration in a nanoresonator with high quality factor has high potential for sensing and coherent control of light-matter interactions on the nanoscale

    Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas

    No full text
    Plasmonic nanoantennas are versatile tools for coherently controlling and directing light on the nanoscale. For these antennas, current fabrication techniques such as electron beam lithography (EBL) or focused ion beam (FIB) milling with Ga<sup>+</sup>-ions routinely achieve feature sizes in the 10 nm range. However, they suffer increasingly from inherent limitations when a precision of single nanometers down to atomic length scales is required, where exciting quantum mechanical effects are expected to affect the nanoantenna optics. Here, we demonstrate that a combined approach of Ga<sup>+</sup>-FIB and milling-based He<sup>+</sup>-ion lithography (HIL) for the fabrication of nanoantennas offers to readily overcome some of these limitations. Gold bowtie antennas with 6 nm gap size were fabricated with single-nanometer accuracy and high reproducibility. Using third harmonic (TH) spectroscopy, we find a substantial enhancement of the nonlinear emission intensity of single HIL-antennas compared to those produced by state-of-the-art gallium-based milling. Moreover, HIL-antennas show a vastly improved polarization contrast. This superior nonlinear performance of HIL-derived plasmonic structures is an excellent testimonial to the application of He<sup>+</sup>-ion beam milling for ultrahigh precision nanofabrication, which in turn can be viewed as a stepping stone to mastering quantum optical investigations in the near-field
    corecore