48 research outputs found

    Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

    Get PDF
    The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C(+) (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C(+) macrophages and Ly6C(-) macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI-and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation

    Flow cytometric mepacrine fluorescence can be used for the exclusion of platelet dense granule deficiency

    Get PDF
    Background: δ-storage pool disease (δ-SPD) is a bleeding disorder characterized by a reduced number of platelet-dense granules. The diagnosis of δ-SPD depends on the measurement of platelet ADP content, but this test is time consuming and requires a relatively large blood volume. Flow cytometric analysis of platelet mepacrine uptake is a potential alternative, but this approach lacks validation, which precludes its use in a diagnostic setting. Objectives: To evaluate the performance of platelet mepacrine uptake as a diagnostic test for δ-SPD. Patients/Methods: Mepacrine fluorescence was determined with flow cytometry before and after platelet activation in 156 patients with a suspected platelet function disorder and compared with platelet ADP content as a reference test. Performance was analyzed with a receiver operating characteristic (ROC) curve. Results: Eleven of 156 patients had δ-SPD based on platelet ADP content. Mepacrine fluorescence was inferior to platelet ADP content in identifying patients with δ-SPD, but both mepacrine uptake (area under the ROC curve [AUC] 0.87) and mepacrine release after platelet activation (AUC 0.80) had good discriminative ability. In our tertiary reference center, mepacrine uptake showed high negative predicitive value (97%) with low positive predictive value (35%). Combined with a negative likelihood ratio of 0.1, these data indicate that mepacrine uptake can be used to exclude δ-SPD in patients with a bleeding tendency. Conclusion: Mepacrine fluorescence can be used as a screening tool to exclude δ-SPD in a large number of patients with a suspected platelet function disorder

    Irreversible renal damage after transient renin-angiotensin system stimulation:involvement of an AT1-receptor mediated immune response

    Get PDF
    Transient activation of the renin-angiotensin system (RAS) induces irreversible renal damage causing sustained elevation in blood pressure (BP) in Cyp1a1-Ren2 transgenic rats. In our current study we hypothesized that activation of the AT1-receptor (AT1R) leads to a T-cell response causing irreversible impairment of renal function and hypertension. Cyp1a1-Ren2 rats harbor a construct for activation of the RAS by indole-3-carbinol (I3C). Rats were fed a I3C diet between 4-8 weeks of age to induce hypertension. Next, I3C was withdrawn and rats were followed-up for another 12 weeks. Additional groups received losartan (20 mg/kg/day) or hydralazine (100 mg/kg/day) treatment between 4-8 weeks. Rats were placed for 24h in metabolic cages before determining BP at week 8, 12 and 20. At these ages, subsets of animals were sacrificed and the presence of kidney T-cell subpopulations was investigated by immunohistochemistry and molecular marker analysis. The development of sustained hypertension was completely prevented by losartan, whereas hydralazine only caused a partial decrease in BP. Markers of renal damage: KIM-1 and osteopontin were highly expressed in urine and kidney samples of I3C-treated rats, even until 20 weeks of age. Additionally, renal expression of regulatory-T cells (Tregs) was highly increased in I3C-treated rats, whereas the expression of T-helper 1 (Th1) cells demonstrated a strong decrease. Losartan prevented these effects completely, whereas hydralazine was unable to affect these changes. In young Cyp1a1-Ren2 rats AT1R activation leads to induction of an immune response, causing a shift from Th1-cells to Tregs, contributing to the development of irreversible renal damage and hypertension

    Electron Tomography and Correlative Approaches in Platelet Studies

    No full text
    Blood platelets play a central role in the arrest of bleeding and the development of thrombosis. Unraveling the complex processes of platelet biogenesis from megakaryocytes, platelet adhesion, aggregation, and secretory responses are important topics in the field of hemostasis and thrombosis. Analysis of the ultrastructural changes that occur during these processes is essential for understanding the rapid membrane dynamics and has contributed substantially to our present knowledge of platelet formation and functioning. Recent developments in real-time imaging, correlative light and electron microscopy imaging (CLEM), and 3D (cryo) electron microscopy and tomography offer exciting opportunities to improve studies of the platelet adhesive responses and secretion at the ultrastructural level in a close to native environment. In this chapter we discuss and illustrate cryo preparation techniques (high-pressure freezing, vitrification), correlative LM and EM workflows, and 3D cryo-electron tomography that we apply in our current research projects

    Live-cell Imaging of Platelet Degranulation and Secretion Under Flow

    No full text
    Blood platelets are essential players in hemostasis, the formation of thrombi to seal vascular breaches. They are also involved in thrombosis, the formation of thrombi that occlude the vasculature and injure organs, with life-threatening consequences. This motivates scientific research on platelet function and the development of methods to track cell-biological processes as they occur under flow conditions. A variety of flow models are available for the study of platelet adhesion and aggregation, two key phenomena in platelet biology. This work describes a method to study real-time platelet degranulation under flow during activation. The method makes use of a flow chamber coupled to a syringe-pump setup that is placed under a wide-field, inverted, LED-based fluorescence microscope. The setup described here allows for the simultaneous excitation of multiple fluorophores that are delivered by fluorescently labeled antibodies or fluorescent dyes. After live-cell imaging experiments, the cover glasses can be further processed and analyzed using static microscopy (i.e., confocal microscopy or scanning electron microscopy)

    Phenotyping the Microcirculation

    No full text

    Live-cell imaging of platelet degranulation and secretion under flow

    No full text
    Blood platelets are essential players in hemostasis, the formation of thrombi to seal vascular breaches. They are also involved in thrombosis, the formation of thrombi that occlude the vasculature and injure organs, with life-threatening consequences. This motivates scientific research on platelet function and the development of methods to track cell-biological processes as they occur under flow conditions. A variety of flow models are available for the study of platelet adhesion and aggregation, two key phenomena in platelet biology. This work describes a method to study real-time platelet degranulation under flow during activation. The method makes use of a flow chamber coupled to a syringe-pump setup that is placed under a wide-field, inverted, LED-based fluorescence microscope. The setup described here allows for the simultaneous excitation of multiple fluorophores that are delivered by fluorescently labeled antibodies or fluorescent dyes. After live-cell imaging experiments, the cover glasses can be further processed and analyzed using static microscopy (i.e., confocal microscopy or scanning electron microscopy)
    corecore