317 research outputs found
Calculations for antiferrodistortive phase of SrTiO3 perovskite: hybrid density functional study
The electronic and atomic structure of SrTiO3 crystals below the antiferrodistortive phase transition observed at 105 K is calculated using the hybrid B3PW functional as implemented in the ab initio CRYSTAL-2003 computer code. Such a combination of non-local exchange and correlation permits the calculation for the first time of the TiO6 octahedron rotational angle and the ratio c/a of tetragonal lattice constants in excellent agreement with experimental data. The level splitting of the bottom of the conduction band is found to be very small, <1 meV. The predicted phase-transition induced change of the optical gap from indirect to direct is confirmed by experimental photoconductivity data
Ab initio Calculations for SrTiO_3 (100) Surface Structure
Results of detailed calculations for SrTiO_3 (100) surface relaxation and the electronic structure for the two different terminations (SrO and TiO_2) are discussed. These are based on ab initio Hartree-Fock (HF) method with electron correlation corrections and Density Functional Theory (DFT) with different exchange-correlation functionals, including hybrid (B3PW, B3LYP) exchange techniques. Results are compared with previous ab initio plane wave LDA calculations. All methods agree well on both surface energies and on atomic displacements. Considerable increase of Ti[Single Bond]O chemical bond covalency nearby the surface is predicted, along with a gap reduction, especially for the TiO_2 termination
The first-principles treatment of the electron-correlation and spin-orbital effects in uranium mononitride nuclear fuels
The DFT+U calculations were employed in a detailed study of the strong electron correlation effects in promising nuclear fuel -- uranium mononitride (UN). A simple method for solving the multiple minima problem in DFT+U simulations and insure obtaining the correct ground state is suggested and applied. The crucial role of spin-orbit interactions in reproduction of the U atom total magnetic moment is demonstrated. Basic material properties (the lattice constants, the spin- and total magnetic moments on U atoms, magnetic ordering, and the density of states) were calculated varying the Hubbard U-parameter. Varying the tetragonal unit cell distortion, the meta-stable states have been carefully identified and analyzed. The difference of the magnetic and structural properties obtained for the meta-stable and ground states are discussed. The optimal effective Hubbard parameter Ueff =1.85 eV reproduces correctly the UN anti-ferromagnetic ordering, and only slightly overestimates the experimental total magnetic moment of U atom and the unit cell volume.JRC.E.3-Materials researc
Computer Modeling of Point Defects, Impurity Self-Ordering Effects and Surfaces in Advanced Perovskite Ferroelectrics
The calculated optical properties of basic point defects - F-type centers and hole polarons - in KNbO_3 perovskite crystals are used for the interpretation of available experimental data. The results of quantum chemical calculations for perovskite KNb_xTa_(1-x)O_3 solid solutions are presented for x=0, 0.125, 0.25, 0.75, and 1. An analysis of the optimized atomic and electronic structure clearly demonstrates that several nearest Nb atoms substituting for Ta in KTaO_3 - unlike Ta impurities in KNbO_3 - reveal a self-ordering effect, which probably triggers the ferroelectricity observed in KNb_xTa_(1-x)O_3. Lastly, the (110) surface relaxations are calculated for SrTiO_3 and BaTiO_3 perovskites. The positions of atoms in 16 near-surface layers placed atop a slab of rigid ions are optimized using the classical shell model. Strong surface rumpling and surface-induced dipole moments perpendicular to the surface are predicted for both the O-terminated and Ti-terminated surfaces
ΠΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ (ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ) ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΏΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² Π½Π° Π±Π°Π·Π΅ Π‘ΠΠΠ
The paper is devoted to the study of the issues of determining the estimated (marginal) cost of investment projects that are implemented within the framework of the IPA. The purpose of the study is to develop scientific and practical recommendations for determining the estimated (marginal) value of real estate objects created in the framework of investment projects implemented on the basis of the IPA. The paper is relevant because current regulatory documentation does not clearly define the concepts of estimated (marginal) cost of infrastructure objects, and there are no recommendations for their assessment, which leads to distortions of the cost base for obtaining subsidies and impacts the evaluation of the effectiveness of such projects. The scientific novelty of the research consists in the development of scientific and practical recommendations for determining the estimated (marginal) value of real estate objects created as part of an investment project implemented on the basis of the IPA. The authors used the following methods of scientific research: deduction, induction and logical method. The concept of the estimated (marginal) value of real estate objects is clarified, which is based on the estimated cost of construction, taking into account a certain number of assumptions. A review of the current methods of calculating the estimated value in Russia and abroad is conducted. It is concluded that in Russia there is no single base for determining the cost of the CIW. The basic index method in the prices of 2000β 2001 significantly reduces the accuracy of calculations. The idea of forming a new dynamic system of the resource-index method, which takes into account the life cycle of a building and is based on big data of price information in construction, on the basis of which it is possible to develop a system of forecasting the estimated value of an object using machine learning methods, is prospective.Π‘ΡΠ°ΡΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΠΎΠΏΡΠΎΡΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ (ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ) ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅Π°Π»ΠΈΠ·ΡΡΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠΎΠ³Π»Π°ΡΠ΅Π½ΠΈΡ ΠΎ Π·Π°ΡΠΈΡΠ΅ ΠΈ ΠΏΠΎΠΎΡΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΏΠΈΡΠ°Π»ΡΠ½ΡΡ
Π²Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ (Π‘ΠΠΠ). Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° Π½Π°ΡΡΠ½ΠΎ-ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ (ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ) ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π½Π΅Π΄Π²ΠΈΠΆΠΈΠΌΠΎΡΡΠΈ, ΡΠΎΠ·Π΄Π°Π½Π½ΡΡ
Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ², ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΠΌΡΡ
Π½Π° Π±Π°Π·Π΅ Π‘ΠΠΠ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π² Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π½Π΅ ΡΠ΅ΡΠΊΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ (ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ) ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ, ΠΎΡΡΡΡΡΡΠ²ΡΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠΎ Π΅Π΅ ΠΎΡΠ΅Π½ΠΊΠ΅, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΡΠΌ ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΠΎΠΉ Π±Π°Π·Ρ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠ±ΡΠΈΠ΄ΠΈΠΉ ΠΈ ΠΎΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π½Π° ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°ΠΊΠΈΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ². ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ Π½Π°ΡΡΠ½ΠΎ-ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ (ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ) ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π½Π΅Π΄Π²ΠΈΠΆΠΈΠΌΠΎΡΡΠΈ, ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΡΡ
Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ°, ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΠΌΠΎΠ³ΠΎ Π½Π° Π±Π°Π·Π΅ Π‘ΠΠΠ. ΠΠ²ΡΠΎΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: Π΄Π΅Π΄ΡΠΊΡΠΈΡ, ΠΈΠ½Π΄ΡΠΊΡΠΈΡ, Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄. Π£ΡΠΎΡΠ½Π΅Π½ΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ (ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ) ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π½Π΅Π΄Π²ΠΈΠΆΠΈΠΌΠΎΡΡΠΈ, Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π»Π΅ΠΆΠΈΡ ΡΠΌΠ΅ΡΠ½Π°Ρ ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΡΡΠ²Π° Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΠΉ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΠΎΠ±Π·ΠΎΡ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ Π² Π ΠΎΡΡΠΈΠΈ ΠΈ Π·Π° ΡΡΠ±Π΅ΠΆΠΎΠΌ. Π‘Π΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ Π² Π ΠΎΡΡΠΈΠΈ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ Π΅Π΄ΠΈΠ½Π°Ρ Π±Π°Π·Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΠΎ-ΠΌΠΎΠ½ΡΠ°ΠΆΠ½ΡΡ
ΡΠ°Π±ΠΎΡ (Π‘ΠΠ ). ΠΠ°Π·ΠΈΡΠ½ΠΎ-ΠΈΠ½Π΄Π΅ΠΊΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π² ΡΠ΅Π½Π°Ρ
2000β2001 Π³Π³. ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠ°Π΅Ρ ΡΠΎΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ². ΠΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π²ΠΈΠ΄ΠΈΡΡΡ ΠΈΠ΄Π΅Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ΅ΡΡΡΡΠ½ΠΎΠ³ΠΎ-ΠΈΠ½Π΄Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΡΠΈΡΡΠ²Π°Π΅Ρ ΠΆΠΈΠ·Π½Π΅Π½Π½ΡΠΉ ΡΠΈΠΊΠ» Π·Π΄Π°Π½ΠΈΡ ΠΈ Π±Π°Π·ΠΈΡΡΠ΅ΡΡΡ Π½Π° Π±ΠΎΠ»ΡΡΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΡΠ΅Π½ΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π² ΡΡΡΠΎΠΈΡΠ΅Π»ΡΡΡΠ²Π΅, Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡΠΎΡΡΡ
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
First principles and semi-empirical calculations of atomic and electronic structure for the (100) and (110) perovskite surfaces
We present and discuss results of the calculations for BaTiO_3 and SrTiO_3 surface relaxation with different terminations using a semi-empirical shell model (SM) as well as ab initio methods based on Hartree-Fock (HF) and Density Functional Theory (DFT) formalisms. Using the SM, the positions of atoms in 16 near-surface layers placed atop a slab of rigid ions are optimized. This permits us determination of surface rumpling and surface-induced dipole moments (polarization) for different terminations of the (100) and (110) surfaces. We also compare results of the ab initio calculations based on both HF with the DFT-type electron correlation corrections, several DFT with different exchange-correlation functionals, and hybrid exchange techniques. Our SM results for the (100) surfaces are in a good agreement with both our ab initio calculations and LEED experiments. For the (110) surfaces O-termination is predicted to be the lowest in energy
- β¦