20 research outputs found

    Mucous contribution to gut nutrient content in American gizzard shad Dorosoma cepedianum

    Get PDF
    This study developed and applied an approach to calculate the proportion of fish gut content composed of mucus secreted by the oropharyngeal cavity and gut. The amount of nitrogen in the contents of the foregut (oesophagus and gizzard) and the epibranchial organs of suspensionā€feeding American gizzard shad Dorosoma cepedianum was significantly higher than the nitrogen in the homogeneous food source. Using data collected from suspensionā€feeding experiments and the nitrogen content of D. cepedianum mucus, a series of equations illustrated that mucus constituted c. 10% of D. cepedianum foregut content and 12% of epibranchial organ content by dry mass. Future quantification of fish feeding selectivity and absorption efficiency can use this approach to take into account the contribution of fish mucus to the nutrients in the gut contents. This study supports the conclusion that suspensionā€feeding D. cepedianum in a heterogeneous environment selectively ingest nutrientā€rich particles, even when gut nutrient content is adjusted to take into account the contribution of mucus

    Evaluation of variants in the selectin genes in age-related macular degeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related macular degeneration (AMD) is a common disease of the elderly that leads to loss of the central visual field due to atrophic or neovascular events. Evidence from human eyes and animal models suggests an important role for macrophages and endothelial cell activation in the pathogenesis of AMD. We sought to determine whether common ancestral variants in genes encoding the selectin family of proteins are associated with AMD.</p> <p>Methods</p> <p>Expression of E-selectin, L-selectin and P-selectin was examined in choroid and retina by quantitative PCR and immunofluorescence. Samples from patients with AMD (n = 341) and controls (n = 400) were genotyped at a total of 34 SNPs in the <it>SELE</it>, <it>SELL </it>and <it>SELP </it>genes. Allele and genotype frequencies at these SNPs were compared between AMD patients and controls as well as between subtypes of AMD (dry, geographic atrophy, and wet) and controls.</p> <p>Results</p> <p>High expression of all three selectin genes was observed in the choroid as compared to the retina. Some selectin labeling of retinal microglia, drusen cores and the choroidal vasculature was observed. In the genetic screen of AMD versus controls, no positive associations were observed for <it>SELE </it>or <it>SELL</it>. One SNP in <it>SELP </it>(rs3917751) produced p-values < 0.05 (uncorrected for multiple measures). In the subtype analyses, 6 SNPs (one in <it>SELE</it>, two in <it>SELL</it>, and three in <it>SELP</it>) produced p-values < 0.05. However, when adjusted for multiple measures with a Bonferroni correction, only one SNP in <it>SELP </it>(rs3917751) produced a statistically significant p-value (p = 0.0029).</p> <p>Conclusions</p> <p>This genetic screen did not detect any SNPs that were highly associated with AMD affection status overall. However, subtype analysis showed that a single SNP located within an intron of <it>SELP </it>(rs3917751) is statistically associated with dry AMD in our cohort. Future studies with additional cohorts and functional assays will clarify the biological significance of this discovery. Based on our findings, it is unlikely that common ancestral variants in the other selectin genes (<it>SELE </it>and <it>SELL</it>) are risk factors for AMD. Finally, it remains possible that sporadic or rare mutations in <it>SELE</it>, <it>SELL</it>, or <it>SELP </it>have a role in the pathogenesis of AMD.</p

    Selective feeding on nutrient-rich particles by gizzard shad Dorosoma cepedianum does not involve mechanical sorting

    Get PDF
    Previous field and laboratory studies have concluded that suspension-feeding detritivorous fish such as gizzard shad Dorosoma cepedianum selectively ingest nutrient-rich particles using either mechanical sorting within the oropharyngeal cavity or behavioral selectivity within the environment, but none have distinguished between these hypothesized selection mechanisms. To determine whether mechanical selectivity occurs within the oropharyngeal cavity, gizzard shad were fed particles of standardized size but different carbon and nitrogen content in homogeneous particle suspensions vs. non-homogeneous particle distributions. By comparing foregut and epibranchial organ contents with the particles available in a homogeneous suspension, we demonstrated that the fish did not use mechanical selection for nutrient-rich particles. Previously published hypotheses for intraoral selection of nutrient-rich particles in gizzard shad using crossflow filtration or gustatory receptors were not supported. However, when particles with different nutrient content were allowed to settle in a heterogeneous distribution, the nutrients in the foregut and epibranchial organs were 1.5 times higher than those of particles in the water and 2.5 times higher than those of settled particles (p ā‰¤ 0.0001). As a test of one potential behavioral mechanism of particle selection, disturbance of the sedimentāˆ’water interface resulted in significantly higher organic carbon (p = 0.01) and nitrogen (p = 0.001) within 1 to 2 cm of the bottom compared to the overlying water and the bottom sediment. Thus, future laboratory and field studies should focus on potential behavioral mechanisms of particle selectivity in detritivorous fish suspension feeding on non-homogeneous distributions of small particles
    corecore