5 research outputs found

    A case of familial isolated hemihyperplasia

    Get PDF
    BACKGROUND: Hemihyperplasia (hemihypertrophy) is defined as asymmetric body overgrowth of one or more body parts. Hemihyperplasia can be isolated or be part of well-defined syndromes such as in the case of Beckwith-Wiedemann syndrome (BWS). Isolated hemihyperplasia is usually sporadic, but a number of familial occurrences have been described. CASE PRESENTATION: We describe a Tunisian family in which three maternal cousins and their maternal grandfather present with isolated hemihyperplasia. CONCLUSIONS: The etiology of isolated hemihyperplasia is unknown although in BWS, genomic imprinting has been shown to play a role in the asymmetric overgrowth. Given the similarity between these two conditions, it is possible that both may share a common pathogenesis. We also discuss the possible genetic mechanisms leading to the production of hemihyperplasia in this family

    Physical Map of 1p36, Placement of Breakpoints in Monosomy 1p36, and Clinical Characterization of the Syndrome

    Get PDF
    Monosomy 1p36 is the most common terminal deletion syndrome. This contiguous gene deletion syndrome is presumably caused by haploinsufficiency of a number of genes. We have constructed a contig of overlapping large-insert clones for the most distal 10.5 Mb of 1p36, evaluated the deletion sizes in 61 subjects with monosomy 1p36 from 60 families, and created a natural deletion panel. We found pure terminal deletions, interstitial deletions, derivative chromosomes, and more complex rearrangements. Breakpoints were “binned” into 0.5-Mb regions. Analyses revealed some clustering of breakpoints but no single common breakpoint. Determination of the parental origin showed that 60% of de novo 1p36 terminal deletions arose from the maternally inherited chromosome. Of the 61 subjects, 30 were examined systematically through a protocol at the Texas Children's Hospital General Clinical Research Center. Specifically, we report hearing evaluations, palatal and ophthalmological examinations, echocardiograms, neurological assessments, and thyroid function tests. To our knowledge, this systematic molecular and clinical characterization of monosomy 1p36 is the largest and most comprehensive study of this deletion syndrome to date. Many cytogenetically visible, apparent terminal deletions are more complex than anticipated by cytogenetics, as revealed at the molecular level by our study. Our clinical findings allow for the more accurate recognition of the syndrome and for proper medical evaluation
    corecore