45 research outputs found

    Towards coherent optical control of a single hole spin: rabi rotation of a trion conditional on the spin state of the hole

    Get PDF
    A hole spin is a potential solid-state q-bit, that may be more robust against nuclear spin induced dephasing than an electron spin. Here we propose and demonstrate the sequential preparation, control and detection of a single hole spin trapped on a self-assembled InGaAs/GaAs quantum dot. The dot is embedded in a photodiode structure under an applied electric field. Fast, triggered, initialization of a hole spin is achieved by creating a spin-polarized electron-hole pair with a picosecond laser pulse, and in an applied electric field, waiting for the electron to tunnel leaving a spin-polarized hole. Detection of the hole spin with picoseconds time resolution is achieved using a second picosecond laser pulse to probe the positive trion transition, where a trion is created conditional on the hole spin being detected as a change in photocurrent. Finally, using this setup we observe a Rabi rotation of the hole-trion transition that is conditional on the hole spin, which for a pulse area of 2 pi can be used to impart a phase shift of pi between the hole spin states, a non-general manipulation of the hole spin. (C) 2009 Elsevier Ltd. All rights reserved

    Lateral Ordering of InAs Quantum Dots on Cross-hatch Patterned GaInP

    Get PDF
    We report the use of partially relaxed tensile as well as compressively strained GaInP layers for lateral ordering of InAs quantum dots with the aid of misfit dislocation networks. The strained layers and the InAs QDs were characterized by means of atomic force microscopy, scanning electron microscopy, and X-ray reciprocal space mapping. The QD-ordering properties of compressive GaInP are found to be very similar with respect to the use of compressive GaInAs, while a significantly stronger ordering of QDs was observed on tensile GaInP. Furthermore, we observed a change of the major type of dislocation in GaInP layers as the growth temperature was modified

    Multi-scale ordering of self-assembled InAs/GaAs(001) quantum dots

    Get PDF
    Ordering phenomena related to the self-assembly of InAs quantum dots (QD) grown on GaAs(001) substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the [1-10] directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules) containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs(001) substrates

    No full text
    We have overgrown GaAs (0 0 1) substrates, patterned with dense square arrays of round-shaped nanometer-sized holes, with GaAs and In(Ga)As. For GaAs overgrowth, the initial holes transform into larger well-defined multicornered holes. A subsequent deposition of InGaAs or InAs onto this template causes the formation of an ordered array of laterally closely spaced In(Ga)As quantum dots (QDs)-termed QD molecules. For GaAs buffer layers thicker than 18 monolayer, the QD molecules tend to align in [1 1 0] direction. On the other hand, if we overgrow the patterned hole array directly with InGaAs, we observe the formation of [(1) over bar 1 0]-aligned QD molecules. Overgrowth of such QD molecule arrays. with a Ga(Al)As spacer and, a second InGaAs QD layer results in the formation of about 1 million perfectly site-controlled InGaAs QDs. Furthermore, we investigate the photoluminescence property of a vertically and laterally aligned InAs QD array and simulate the strain energy density distribution generated by the buried QDs. (C) 2003 Elsevier B.V. All rights reserved
    corecore