819 research outputs found

    Star Clusters with Primordial Binaries: II. Dynamical Evolution of Models in a Tidal Field

    Full text link
    [abridged] We extend our analysis of the dynamical evolution of simple star cluster models, in order to provide comparison standards that will aid in interpreting the results of more complex realistic simulations. We augment our previous primordial-binary simulations by introducing a tidal field, and starting with King models of different central concentrations. We present the results of N-body calculations of the evolution of equal-mass models, starting with primordial binary fractions of 0 - 100 %, and N values from 512 to 16384. We also attempt to extrapolate some of our results to the larger number of particles that are necessary to model globular clusters. We characterize the steady-state `deuterium main sequence' phase in which primordial binaries are depleted in the core in the process of `gravitationally burning'. In this phase we find that the ratio of the core to half-mass radius, r_c/r_h, is similar to that measured for isolated systems. In addition to the generation of energy due to hardening and depletion of the primordial binary population, the overall evolution of the star clusters is driven by a competing process: the tidal disruption of the system. We find that the depletion of primordial binaries before tidal dissolution of the system is possible only if the initial number is below 0.05 N, in the case of a King model with W_0=7 and N=4096 (which is one of our longest living models). We compare our findings, obtained by means of direct N-body simulations but scaled, where possible, to larger N, with similar studies carried out by means of Monte Carlo methods.Comment: 15 pages, 18 figures, matches MNRAS accepted version, some sections reorganized but no major change

    Star Clusters with Primordial Binaries: I. Dynamical Evolution of Isolated Models

    Full text link
    In order to interpret the results of complex realistic star cluster simulations, which rely on many simplifying approximations and assumptions, it is essential to study the behavior of even more idealized models, which can highlight the essential physical effects and are amenable to more exact methods. With this aim, we present the results of N-body calculations of the evolution of equal-mass models, starting with primordial binary fractions of 0 - 100 %, with values of N ranging from 256 to 16384. This allows us to extrapolate the main features of the evolution to systems comparable in particle number with globular clusters. In this range, we find that the steady-state `deuterium main sequence' is characterized by a ratio of the core radius to half-mass radius that follows qualitatively the analytical estimate by Vesperini & Chernoff (1994), although the N dependence is steeper than expected. Interestingly, for an initial binary fraction f greater than 10%, the binary heating in the core during the post collapse phase almost saturates (becoming nearly independent of f), and so little variation in the structural properties is observed. Thus, although we observe a significantly lower binary abundance in the core with respect to the Fokker-Planck simulations by Gao et al. (1991), this is of little dynamical consequence. At variance with the study of Gao et al. (1991), we see no sign of gravothermal oscillations before 150 halfmass relaxation times. At later times, however, oscillations become prominent. We demonstrate the gravothermal nature of these oscillations.Comment: 14 pages, 22 figures, MNRAS accepte

    Growth of Intermediate-Mass Black Holes in Globular Clusters

    Full text link
    We present results of numerical simulations of sequences of binary-single scattering events of black holes in dense stellar environments. The simulations cover a wide range of mass ratios from equal mass objects to 1000:10:10 solar masses and compare purely Newtonian simulations to simulations in which Newtonian encounters are interspersed with gravitational wave emission from the binary. In both cases, the sequence is terminated when the binary's merger time due to gravitational radiation is less than the arrival time of the next interloper. We find that black hole binaries typically merge with a very high eccentricity (0.93 < e < 0.95 pure Newtonian; 0.85 < e < 0.90 with gravitational wave emission) and that adding gravitational wave emission decreases the time to harden a binary until merger by ~ 30% to 40%. We discuss the implications of this work for the formation of intermediate-mass black holes and gravitational wave detection.Comment: 28 pages including 9 figures, submitted to Ap

    Studies in the Synthesis of Santonin

    Get PDF
    Abstract Not Provided

    Pseudo Goldstone Bosons Phenomenology in Minimal Walking Technicolor

    Get PDF
    We construct the non-linear realized Lagrangian for the Goldstone Bosons associated to the breaking pattern of SU(4) to SO(4). This pattern is expected to occur in any Technicolor extension of the standard model featuring two Dirac fermions transforming according to real representations of the underlying gauge group. We concentrate on the Minimal Walking Technicolor quantum number assignments with respect to the standard model symmetries. We demonstrate that for, any choice of the quantum numbers, consistent with gauge and Witten anomalies the spectrum of the pseudo Goldstone Bosons contains electrically doubly charged states which can be discovered at the Large Hadron Collider.Comment: 25 pages, 5 figure

    The M/L ratio of massive young clusters

    Full text link
    We point out a strong time-evolution of the mass-to-light conversion factor \eta commonly used to estimate masses of dense star clusters from observed cluster radii and stellar velocity dispersions. We use a gas-dynamical model coupled with the Cambridge stellar evolution tracks to compute line-of-sight velocity dispersions and half-light radii weighted by the luminosity. Stars at birth are assumed to follow the Salpeter mass function in the range [0.15--17 M_\sun]. We find that η\eta, and hence the estimated cluster mass, increases by factors as large as 3 over time-scales of 20 million years. Increasing the upper mass limit to 50 M_\sun leads to a sharp rise of similar amplitude but in as little as 10 million years. Fitting truncated isothermal (Michie-King) models to the projected light profile leads to over-estimates of the concentration par ameter c of δc0.3\delta c\approx 0.3 compared to the same functional fit applied to the proj ected mass density.Comment: Draft version of an ApJ lette

    First Principles Simulations of Boron Diffusion in Graphite

    Get PDF
    Boron strongly modifies electronic and diffusion properties of graphite. We report the first ab initio study of boron interaction with the point defects in graphite, which includes structures, thermodynamics, and diffusion. A number of possible diffusion mechanisms of boron in graphite are suggested. We conclude that boron diffuses in graphite by a kick-out mechanism. This mechanism explains the common activation energy, but large magnitude difference, for the rate of boron diffusion parallel and perpendicular to the basal plane. © 2007 The American Physical Society

    Solvable model of a self-gravitating system

    Full text link
    We introduce and discuss an effective model of a self-gravitating system whose equilibrium thermodynamics can be solved in both the microcanonical and the canonical ensemble, up to a maximization with respect to a single variable. Such a model can be derived from a model of self-gravitating particles confined on a ring, referred to as the self-gravitating ring (SGR) model, allowing a quantitative comparison between the thermodynamics of the two models. Despite the rather crude approximations involved in its derivation, the effective model compares quite well with the SGR model. Moreover, we discuss the relation between the effective model presented here and another model introduced by Thirring forty years ago. The two models are very similar and can be considered as examples of a class of minimal models of self-gravitating systems.Comment: 21 pages, 6 figures; submitted to JSTAT for the special issue on long-range interaction

    Predictions for Triple Stars with and without a Pulsar in Star Clusters

    Full text link
    Though about 80 pulsar binaries have been detected in globular clusters so far, no pulsar has been found in a triple system in which all three objects are of comparable mass. Here we present predictions for the abundance of such triple systems, and for the most likely characteristics of these systems. Our predictions are based on an extensive set of more than 500 direct simulations of star clusters with primordial binaries, and a number of additional runs containing primordial triples. Our simulations employ a number N_{tot} of equal mass stars from N_{tot}=512 to N_{tot}=19661 and a primordial binary fraction from 0-50%. In addition, we validate our results against simulations with N=19661 that include a mass spectrum with a turn-off mass at 0.8 M_{sun}, appropriate to describe the old stellar populations of galactic globular clusters. Based on our simulations, we expect that typical triple abundances in the core of a dense cluster are two orders of magnitude lower than the binary abundances, which in itself already suggests that we don't have to wait too long for the first comparable-mass triple with a pulsar to be detected.Comment: 11 pages, minor changes to match MNRAS accepted versio
    corecore