2,078 research outputs found

    On the Progenitors of Collapsars

    Full text link
    We study the evolution of stars that may be the progenitors of common (long-soft) GRBs. Bare rotating helium stars, presumed to have lost their envelopes due to winds or companions, are followed from central helium ignition to iron core collapse. Including realistic estimates of angular momentum transport (Heger, Langer, & Woosley 2000) by non-magnetic processes and mass loss, one is still able to create a collapsed object at the end with sufficient angular momentum to form a centrifugally supported disk, i.e., to drive a collapsar engine. However, inclusion of current estimates of magnetic torques (Spruit 2002) results in too little angular momentum for collapsars.Comment: 3 pages, 5 figures, in Proc. Woods Hole GRB meeting, ed. Roland Vanderspe

    Long Gamma-Ray Transients from Collapsars

    Full text link
    In the collapsar model for common gamma-ray bursts, the formation of a centrifugally supported disk occurs during the first ∼\sim10 seconds following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur - blue supergiants with low mass loss rates, tidally-interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common gamma-ray burst. A broad range of powers is possible, 104710^{47} to 1050 10^{50}\,erg s−1^{-1}, and this brightness could be enhanced by beaming. Such events were probably more frequent in the early universe where mass loss rates were lower. Indeed this could be one of the most common forms of gamma-ray transients in the universe and could be used to study first generation stars. Several events could be active in the sky at any one time. A recent example of this sort of event may have been the SWIFT transient Sw-1644+57.Comment: submitted to Astrophysical Journa

    The Central Engines of Gamma-Ray Bursts

    Full text link
    Leading models for the "central engine" of long, soft gamma-ray bursts (GRBs) are briefly reviewed with emphasis on the collapsar model. Growing evidence supports the hypothesis that GRBs are a supernova-like phenomenon occurring in star forming regions, differing from ordinary supernovae in that a large fraction of their energy is concentrated in highly relativistic jets. The possible progenitors and physics of such explosions are discussed and the important role of the interaction of the emerging relativistic jet with the collapsing star is emphasized. This interaction may be responsible for most of the time structure seen in long, soft GRBs. What we have called "GRBs" may actually be a diverse set of phenomena with a key parameter being the angle at which the burst is observed. GRB 980425/SN 1988bw and the recently discovered hard x-ray flashes may be examples of this diversity.Comment: 8 pages, Proc. Woods Hole GRB meeting, Nov 5 - 9 WoodsHole Massachusetts, Ed. Roland Vanderspe

    Fallback and Black Hole Production in Massive Stars

    Get PDF
    The compact remnants of core collapse supernovae - neutron stars and black holes - have properties that reflect both the structure of their stellar progenitors and the physics of the explosion. In particular, the masses of these remnants are sensitive to the density structure of the presupernova star and to the explosion energy. To a considerable extent, the final mass is determined by the ``fallback'', during the explosion, of matter that initially moves outwards, yet ultimately fails to escape. We consider here the simulated explosion of a large number of massive stars (10 to 100 \Msun) of Population I (solar metallicity) and III (zero metallicity), and find systematic differences in the remnant mass distributions. As pointed out by Chevalier(1989), supernovae in more compact progenitor stars have stronger reverse shocks and experience more fallback. For Population III stars above about 25 \Msun and explosion energies less than 1.5×10511.5 \times 10^{51} erg, black holes are a common outcome, with masses that increase monotonically with increasing main sequence mass up to a maximum hole mass of about 35 \Msun. If such stars produce primary nitrogen, however, their black holes are systematically smaller. For modern supernovae with nearly solar metallicity, black hole production is much less frequent and the typical masses, which depend sensitively on explosion energy, are smaller. We explore the neutron star initial mass function for both populations and, for reasonable assumptions about the initial mass cut of the explosion, find good agreement with the average of observed masses of neutron stars in binaries. We also find evidence for a bimodal distribution of neutron star masses with a spike around 1.2 \Msun (gravitational mass) and a broader distribution peaked around 1.4 \Msun.Comment: Accepted for publication in Ap

    Two Dimensional Simulations of Pair-Instability Supernovae

    Full text link
    We present preliminary results from two dimensional numerical studies of pair instability supernova (PSN). We study nuclear burning, hydrodynamic instabilities and explosion of very massive stars. Use a new radiation-hydrodynamics code, CASTRO.Comment: Proceedings of "The First Stars and Galaxies: Challenges for the Next Decade", Austin, Texas, March 8-11, 2010. 2 pages, 1 figur

    Evolution and Explosion of Very Massive Primordial Stars

    Full text link
    While the modern stellar IMF shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars (>100 solar masses) may have been abundant in the early universe. Other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. After central helium burning, they encounter the electron-positron pair instability, collapse, and burn oxygen and silicon explosively. If sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. They also eject up to 50 solar masses of radioactive Ni56. Stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair-creation supernovae with regions of stellar mass that are nucleosynthetically sterile. Pair-instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.Comment: 7 pages, including 4 figures; in. proc. MPA/ESO/MPE/USM Joint Astronomy Conference "Lighthouses of the Universe: The Most Luminous Celestial Objects and their use for Cosmology
    • …
    corecore