31 research outputs found

    Association of angiogenic factors with prognosis in esophageal cancer

    Get PDF
    Background: Despite multimodal therapy esophageal cancer often presents with poor prognosis. To improve outcome, tumor angiogenesis and anti-angiogenic therapeutic agents have recently gained importance. However, patient subgroups who benefit from anti-angiogenic therapy are not yet defined. In this retrospective exploratory study we investigated 9 angiogenic factors in patients’ serum and tissue samples with regard to their association with clinicopathological parameters, prognosis and response in patients with locally advanced preoperatively treated esophageal cancer. Methods: From 2007 to 2012 preoperative serum and corresponding tumor tissue (n = 54), only serum (n = 20) or only tumor tissue (n = 4) were collected from esophageal squamous cell carcinoma (SCC) (n = 34) and adenocarcinoma of the esophagogastric junction (AEG) (n = 44) staged cT3/4NanyM0/x after preoperative chemo(radio)therapy. Angiogenic cytokine levels in both tissue and serum were measured by multiplex immunoassay. Results: Median survival in all patients was 28.49 months. No significant difference was found in survival between SCC and AEG (p = 0.90). 26 patients were histopathological responders. Histopathological response was associated with prognosis (p = 0.05). Angiogenic factors were associated with the following clinicopathological factors: tumor tissue expression of Angiopoietin-2 and Follistatin was higher in SCC compared to AEG (p = 0.022 and p = 0.001). High HGF and Follistatin expression in the tumor tissue was associated with poor prognosis in all patients (p = 0.037 and p = 0.036). No association with prognosis was found in the patients’ serum. Neither patients’ serum nor tumor tissue showed an association between angiogenic factors and response to neoadjuvant therapy. Conclusion: Two angiogenic factors (HGF and Follistatin) in posttherapeutic tumor tissue are associated with prognosis in esophageal cancer patients. Biological differences of AEG and SCC with respect to angiogenesis were evident by the different expression of 2 angiogenic factors. Results are promising and should be pursued prospectively, optimally sequentially pre- and posttherapeutically

    Neonatal screening: identification of children with 11β-hydroxylase deficiency by second-tier testing

    Get PDF
    21-Hydroxylase deficiency (21-OHD) is the target disease of newborn screening for congenital adrenal hyperplasia (CAH). We describe the additional detection of patients suffering from 11β-hydroxylase deficiency (11-OHD) by second-tier testing.Over a period of 5 years, screening for CAH was done in a total of 986,098 newborns by time-resolved immunoassay (DELFIA®) for 17α-hydroxyprogesterone (17-OHP). Positive samples were subsequently analyzed in an LC-MS/MS second-tier test including 17-OHP, cortisol, 11-deoxycortisol, 4-androstenedione and 21-deoxycortisol.In addition to 78 cases of 21-OHD, 5 patients with 11-OHD were identified. Diagnostic parameters were a markedly elevated concentration of 11-deoxycortisol in the presence of a low level of cortisol. Androstenedione was also increased. In contrast to 21-OHD, concentrations of 21-deoxycortisol were normal.Steroid profiling in newborn blood samples showing positive results in immunoassays for 17-OHP allows for differentiating 21-OHD from 11-OHD. This procedure may not detect all cases of 11-OHD in the newborn population because there may be samples of affected newborns with negative results for 17-OHP in the immunoassay

    Static and dynamic 68Ga-FAPI PET/CT for the detection of malignant transformation of intraductal papillary mucinous neoplasia of the pancreas.

    Get PDF
    Purpose: Pancreatic ductal adenocarcinoma (PDAC) may arise from intraductal papillary-mucinous neoplasms (IPMN) with malignant transformation, but a significant portion of IPMN remains to show benign behavior. Therefore, it is important to differentiate between benign IPMN and IPMN lesions undergoing malignant transformation. However, non-operative differentiation by ultrasound, CT, MRI and carbohydrate antigen 19-9 (CA19-9) is still unsatisfactory. Here, we assessed the clinical feasibility of additional assessment of malignancy by positron emission tomography using 68Gallium-labeled Fibroblast Activation Protein Inhibitors (68Ga-FAPI-PET) in 25 patients with magnetic resonance imaging (MRI) - or computed tomography (CT) - proven cystic pancreatic lesions. Methods: 25 patients with cystic pancreatic lesions who were followed up in the European Pancreas Center of Heidelberg University hospital and who were led to surgical resection or fine needle aspiration (FNA) due to suspicious clinical, laboratory chemistry or radiological findings were examined by static (all patients) and dynamic (20 patients) 68Ga-FAPI-PET. Cystic pancreatic lesions were delineated and maximum and mean standardized uptake values (SUVmax / SUVmean) were determined. Time activity curves and dynamic parameters (time to peak, K1, k2, K3, k4) were extracted from dynamic PET data. Receiver operating curves (ROC) of static and dynamic PET parameters were calculated. Results: 11 of the patients suffered from menacing IPMN (high grade IPMN with (6 cases) or without (5 cases) progression into PDAC) and 11 from low grade IPMN, 3 patients from other benign entities. Menacing IMPN showed significantly elevated 68Ga-FAPI uptake compared to low grade IPMN and other benign cystic lesions. In dynamic imaging, menacing IPMN showed increasing time activity curves (TAC) followed by slow decrease afterwards, TAC of low grade IPMN showed an immediate peak followed by rapid decrease for about 10 minutes and slower decrease for the rest of the time. ROC curves showed high sensitivity and specificity (area under the curve (AUC) greater than 80%) of static and dynamic PET parameters for the differentiation of IPMN subtypes. Conclusion: 68Ga-FAPI-PET is a helpful new tool for the differentiation of menacing and low grade IPMN and shows the potential to avoid unnecessary surgery for non-malignant pancreatic IPMN

    Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC

    Get PDF
    Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection

    Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    No full text
    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-derived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is likely to be an important component of the innate control of the parasite

    Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    No full text
    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-derived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is likely to be an important component of the innate control of the parasite
    corecore