723 research outputs found

    Collective exchange processes reveal an active site proton cage in bacteriorhodopsin

    Get PDF
    Proton translocation across membranes is vital to all kingdoms of life. Mechanistically, it relies on characteristic proton flows and modifications of hydrogen bonding patterns, termed protonation dynamics, which can be directly observed by fast magic angle spinning (MAS) NMR. Here, we demonstrate that reversible proton displacement in the active site of bacteriorhodopsin already takes place in its equilibrated dark-state, providing new information on the underlying hydrogen exchange processes. In particular, MAS NMR reveals proton exchange at D85 and the retinal Schiff base, suggesting a tautomeric equilibrium and thus partial ionization of D85. We provide evidence for a proton cage and detect a preformed proton path between D85 and the proton shuttle R82. The protons at D96 and D85 exchange with water, in line with ab initio molecular dynamics simulations. We propose that retinal isomerization makes the observed proton exchange processes irreversible and delivers a proton towards the extracellular release site

    Dual tasking under compromised visual and somatosensory input in elderly fallers and non-fallers

    Full text link
    Background: Performance of additional tasks disturbs postural control in elderly. It is unknown, however, how postural control is affected in elderly fallers and non-fallers in a reduced sensory situation. Objective: To compare differences between single and dual tasking in three test conditions; (1) no-vision, (2) under reduced somatosensory information and (3) with a combination of both conditions. Design: An observational cohort study with participants assigned to a 12-month pretest fall assessment and a postural balance assessment. Methods: Fifteen independently living elderly participated (77.5 ± 7.0 [63-87] years). Falls were pre-assessed with a 1- year monthy “fall calendar”. Postural control was analyzed by means of a force platform. Participants were standing quiet (first task) while counting backwards (second task). A 2-factor (group x condition) ANOVA was performed at p<.05. Differences of postural (DTCp) and cognitive dual task costs (DTCc) between test conditions were analyzed (one-way ANOVA). Results: The analysis showed significant group (fallers/non-fallers) and condition effects. Post hoc analyses indicated that the postural control variables were significantly different during the concurrent reduced vision and somatosensory information. Dual task costs showed a significant difference between normal (N) and the combined condition (NV+RP) in non-fallers. Conclusion: The combination of reduced visual and somatosensory information causes a larger disturbance of postural stability compared with the reduction of visual or somatosensory information alone. Non-fallers seem to have no threats to the postural control stability in this combined reduced sensory situation. They reduce their postural control, which leaves them enough resources to compensate for the reduced sensory information

    Visual contribution to postural stability: Interaction between target fixation or tracking and static or dynamic large-field stimulus

    Full text link
    Stationary visual information has a stabilizing effect on posture, whereas moving visual information is destabilizing. We compared the influence of a stationary or moving fixation point to the influence of stationary or moving large-field stimulation, as well as the interaction between a fixation point and a large-field stimulus. We recorded body sway in 20 healthy subjects who were fixating a stationary or oscillating dot (vertical or horizontal motion, 1/3Hz, +/-12 degrees amplitude, distance 96cm). In addition, a large-field random dot pattern (extension: approximately 80x70 degrees ) was stationary, moving or absent. Visual fixation of a stationary dot in darkness did not reduce antero-posterior (AP) sway compared to the situation in total darkness, but slightly reduced lateral sway at frequencies below 0.5Hz. In contrast, fixating a stationary dot on a stationary large-field pattern reduced both AP and lateral body sway at all frequencies (0.1-2Hz). Ocular tracking of the oscillating dot caused a peak in body sway at 1/3Hz, i.e. the stimulus frequency, but there was no influence of large-field stimulus at this frequency. A stationary large-field pattern, however, reduced AP and lateral sway at frequencies between 0.1 and 2Hz when subjects tracked a moving dot, compared to tracking in darkness. Our results demonstrate that a stationary large-field pattern has a stabilizing effect in all conditions, independent of whether the eyes are fixing on a stationary target or tracking a moving target

    Quantum amplitude estimation with error mitigation for time-evolving probabilistic networks

    Full text link
    We present a method to model a discretized time evolution of probabilistic networks on gate-based quantum computers. We consider networks of nodes, where each node can be in one of two states: good or failed. In each time step, probabilities are assigned for each node to fail (switch from good to failed) or to recover (switch from failed to good). Furthermore, probabilities are assigned for failing nodes to trigger the failure of other, good nodes. Our method can evaluate arbitrary network topologies for any number of time steps. We can therefore model events such as cascaded failure and avalanche effects which are inherent to financial networks, payment and supply chain networks, power grids, telecommunication networks and others. Using quantum amplitude estimation techniques, we are able to estimate the probability of any configuration for any set of nodes over time. This allows us, for example, to determine the probability of the first node to be in the good state after the last time step, without the necessity to track intermediate states. We present the results of a low-depth quantum amplitude estimation on a simulator with a realistic noise model. We also present the results for running this example on the AQT quantum computer system PINE. Finally, we introduce an error model that allows us to improve the results from the simulator and from the experiments on the PINE system

    Microcapsule Buckling Triggered by Compression-Induced Interfacial Phase Change

    Get PDF
    There is an emerging trend towards the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression.This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, (TR)\left(\frac TR\right)buck_{buck}

    Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases

    Full text link
    The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for N-linked glycosylation of proteins in the endoplasmic reticulum (ER), is catalyzed by different glycosyltransferases located at the membrane of the ER. We report on the identification and characterization of the ALG12 locus encoding a novel mannosyltransferase responsible for the addition of the α-1,6 mannose to dolichollinked Man7GlcNAc2. The biosynthesis of the highly branched oligosaccharide follows an ordered pathway which ensures that only completely assembled oligosaccharide is transferred from the lipid anchor to proteins. Using the combination of mutant strains affected in the assembly pathway of lipid-linked oligosaccharides and overexpression of distinct glycosyltransferases, we were able to define the substrate specificities of the transferases that are critical for branching. Our results demonstrate that branched oligosaccharide structures can be specifically recognized by the ER glycosyltransferases. This substrate specificity of the different transferases explains the ordered assembly of the complex structure of lipid-linked Glc3Man9GlcNAc2 in the endoplasmic reticulu

    No downregulation of immune function during breeding in two year-round breeding bird species in an equatorial East African environment

    Get PDF
    Some equatorial environments exhibit substantial within-location variation in environmental conditions throughout the year and yet have year-round breeding birds. This implies that breeding in such systems are potentially unrelated to the variable environmental conditions. By breeding not being influenced by environmental conditions, we become sure that any differences in immune function between breeding and non-breeding birds do not result from environmental variation, therefore allowing for exclusion of the confounding effect of variation in environmental conditions. This create a unique opportunity to test if immune function is down-regulated during reproduction compared to non-breeding periods. We compared the immune function of sympatric male and female chick-feeding and non-breeding red-capped Calandrella cinerea and rufous-naped larks Mirafra africana in equatorial East Africa. These closely-related species occupy different niches and have different breeding strategies in the same grassland habitat. Red-capped larks prefer areas with short grass or almost bare ground, and breed during low rainfall periods. Rufous-naped larks prefer areas of tall grass and scattered shrubs and breed during high rainfall. We measured the following immune indices: nitric oxide, haptoglobin, agglutination and lysis, and measured total monthly rain, monthly average minimum (T-min) and maximum (T-max) temperatures. Contrary to our predictions, we found no down-regulation of immune function during breeding; breeding birds had higher nitric oxide than non-breeding ones in both species, while the other three immune indices did not differ between breeding phases. Red-capped larks had higher nitric oxide concentrations than Rufous-naped larks, which in turn had higher haptoglobin levels than red-capped larks. T-max was higher during breeding than during non-breeding for red-capped larks only, suggesting potential confounding effect of T-max on the comparison of immune function between breeding and non-breeding birds for this species. Overall, we conclude that in the two year-round breeding equatorial larks, immune function is not down-regulated during breeding

    Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools

    Get PDF
    Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals
    • …
    corecore