1,499 research outputs found

    Pressure and linear heat capacity in the superconducting state of thoriated UBe13

    Full text link
    Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large linear term in its specific heat. We show that under uniaxial pressure, the linear heat capacity increases in magnitude by more than a factor of two. The change is reversible and suggests that the linear term is an intrinsic property of the material. In addition, we find no evidence of hysteresis or of latent heat in the low-temperature and low-pressure portion of the phase diagram, showing that all transitions in this region are second order.Comment: 5 pages, 4 figure

    Possible f-wave superconductivity in Sr2_2RuO4_4?

    Full text link
    Until recently it has been believed that the superconductivity in Sr2_2RuO4_4 is described by p-wave pairing. However, both the recent specific heat and the magnetic penetration depth measurements on the purest single crystals of Sr2_2RuO4_4 appear to be explained more consistently in terms of f-wave superconductivity. In order to further this hypothesis, we study theoretically the thermodynamics and thermal conductivity of f-wave superconductors in a planar magnetic field. We find the simple expressions for these quantities when H≪Hc2H \ll H_{c2} and T≪TcT \ll T_{c}, which should be readily accessible experimentally.Comment: 6 pages, 2 figure

    Generalized constraints on quantum amplification

    Full text link
    We derive quantum constraints on the minimal amount of noise added in linear amplification involving input or output signals whose component operators do not necessarily have c-number commutators, as is the case for fermion currents. This is a generalization of constraints derived for the amplification of bosonic fields whose components posses c-number commutators.Comment: 4 pages, 1 figure, submitted to Physical Review Letter

    Spin dynamics in a structurally ordered non-Fermi liquid compound: YbRh_2Si_2

    Full text link
    Muon spin relaxation (muSR) experiments have been carried out at low temperatures in the non-Fermi-liquid heavy-fermion compound YbRh_2Si_2. The longitudinal-field muSR relaxation function is exponential, indicative that the dynamic spin fluctuations are homogeneous. The relaxation rate 1/T_1 varies with applied field as H^{-y}, y = 1.0 \pm 0.1, which implies a scaling law of the form \chi''(\omega) \propto \omega^{-y} f(\omega/T), \lim_{x\to0} f(x) = x for the dynamic spin susceptibility.Comment: 5 pages, 2 figures. To be published in proceedings of musr2002 (Physica B

    Chiral Correction to the Spin Fluctuation Feedback in two-dimensional p-wave Superconductors

    Full text link
    We consider the stability of the superconducting phase for spin-triplet p-wave pairing in a quasi-two-dimensional system. We show that in the absence of spin-orbit coupling there is a chiral contribution to spin fluctuation feedback which is related to spin quantum Hall effect in a chiral superconducting phase. We show that this mechanism supports the stability of a chiral p-wave state.Comment: 8 pages. The final version is accepted for publication in Europhys Let

    Identification of Non-unitary triplet pairing in a heavy Fermion superconductor UPt_3

    Full text link
    A NMR experiment recently done by Tou et al. on a heavy Fermion superconductor UPt3_3 is interpreted in terms of a non-unitary spin-triplet pairing state which we have been advocating. The proposed state successfully explains various aspects of the seemingly complicated Knight shift behaviors probed for major orientations, including a remarkable d-vector rotation under weak fields. This entitles UPt3_3 as the first example that a charged many body system forms a spin-triplet odd-par ity pairing at low temperatures and demonstrates unambiguously that the putative spin-orbit coupling in UPt3_3 is weak.Comment: 4 pages, 2 eps figures, to be published in J. Phys. Soc. Jpn. 67 (1998) No.

    Low Temperature Magnetic Properties of the Double Exchange Model

    Full text link
    We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener to explain ferromagnetism has unexpected properties when there is more than one itinerant electron. We find that, in general, the many-body ground state of the DE model is {\it not} globally FM ordered (except for special filled-shell cases). Also, the low energy excitations of this model are distinct from spin wave excitations in usual Heisenberg ferromagnets, which will result in unusual dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include

    Direct observation of the formation of polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 using neutron pair distribution function analysis

    Get PDF
    Using neutron pair distribution function (PDF) analysis over the temperature range from 1000 K to 15 K, we demonstrate the existence of local polarization and the formation of medium-range, polar nanoregions (PNRs) with local rhombohedral order in a prototypical relaxor ferroelectric Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3. We estimate the volume fraction of the PNRs as a function of temperature and show that this fraction steadily increases from 0 % to a maximum of ∼\sim 30% as the temperature decreases from 650 K to 15 K. Below T∼\sim200 K the PNRs start to overlap as their volume fraction reaches the percolation threshold. We propose that percolating PNRs and their concomitant overlap play a significant role in the relaxor behavior of Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3.Comment: 4 pages, 3 figure

    Magnetoresistance of UPt3

    Full text link
    We have performed measurements of the temperature dependence of the magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic field along the b axis, the easy magnetization axis. We have confirmed previous results for transverse magnetoresistance with the current along the c axis, and report measurements of the longitudinal magnetoresistance with the current along the b axis. The presence of a linear term in both cases indicates broken orientational symmetry associated with magnetic order. With the current along the c axis the linear term appears near 5 K, increasing rapidly with decreasing temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006
    • …
    corecore