118 research outputs found

    Contrastive Transformer Learning with Proximity Data Generation for Text-Based Person Search

    Full text link
    Given a descriptive text query, text-based person search (TBPS) aims to retrieve the best-matched target person from an image gallery. Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data. To better align the two modalities, most existing works focus on introducing sophisticated network structures and auxiliary tasks, which are complex and hard to implement. In this paper, we propose a simple yet effective dual Transformer model for text-based person search. By exploiting a hardness-aware contrastive learning strategy, our model achieves state-of-the-art performance without any special design for local feature alignment or side information. Moreover, we propose a proximity data generation (PDG) module to automatically produce more diverse data for cross-modal training. The PDG module first introduces an automatic generation algorithm based on a text-to-image diffusion model, which generates new text-image pair samples in the proximity space of original ones. Then it combines approximate text generation and feature-level mixup during training to further strengthen the data diversity. The PDG module can largely guarantee the reasonability of the generated samples that are directly used for training without any human inspection for noise rejection. It improves the performance of our model significantly, providing a feasible solution to the data insufficiency problem faced by such fine-grained visual-linguistic tasks. Extensive experiments on two popular datasets of the TBPS task (i.e., CUHK-PEDES and ICFG-PEDES) show that the proposed approach outperforms state-of-the-art approaches evidently, e.g., improving by 3.88%, 4.02%, 2.92% in terms of Top1, Top5, Top10 on CUHK-PEDES. The codes will be available at https://github.com/HCPLab-SYSU/PersonSearch-CTLGComment: Accepted by IEEE T-CSV

    Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph Generation

    Full text link
    Video scene graph generation (VidSGG) aims to identify objects in visual scenes and infer their relationships for a given video. It requires not only a comprehensive understanding of each object scattered on the whole scene but also a deep dive into their temporal motions and interactions. Inherently, object pairs and their relationships enjoy spatial co-occurrence correlations within each image and temporal consistency/transition correlations across different images, which can serve as prior knowledge to facilitate VidSGG model learning and inference. In this work, we propose a spatial-temporal knowledge-embedded transformer (STKET) that incorporates the prior spatial-temporal knowledge into the multi-head cross-attention mechanism to learn more representative relationship representations. Specifically, we first learn spatial co-occurrence and temporal transition correlations in a statistical manner. Then, we design spatial and temporal knowledge-embedded layers that introduce the multi-head cross-attention mechanism to fully explore the interaction between visual representation and the knowledge to generate spatial- and temporal-embedded representations, respectively. Finally, we aggregate these representations for each subject-object pair to predict the final semantic labels and their relationships. Extensive experiments show that STKET outperforms current competing algorithms by a large margin, e.g., improving the mR@50 by 8.1%, 4.7%, and 2.1% on different settings over current algorithms.Comment: Technical Repor

    Knowledge Graph Transfer Network for Few-Shot Recognition

    Full text link
    Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.Comment: accepted by AAAI 2020 as oral pape

    Semantic Representation and Dependency Learning for Multi-Label Image Recognition

    Full text link
    Recently many multi-label image recognition (MLR) works have made significant progress by introducing pre-trained object detection models to generate lots of proposals or utilizing statistical label co-occurrence enhance the correlation among different categories. However, these works have some limitations: (1) the effectiveness of the network significantly depends on pre-trained object detection models that bring expensive and unaffordable computation; (2) the network performance degrades when there exist occasional co-occurrence objects in images, especially for the rare categories. To address these problems, we propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category and capture semantic dependency among all categories. Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model to focus on semantic-aware regions. We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions to regularize the network training. Extensive experiments and comparisons on two popular MLR benchmark datasets (i.e., MS-COCO and Pascal VOC 2007) demonstrate the effectiveness of the proposed framework over current state-of-the-art algorithms.Comment: 25 pages, 7 figure

    Dual-Perspective Semantic-Aware Representation Blending for Multi-Label Image Recognition with Partial Labels

    Full text link
    Despite achieving impressive progress, current multi-label image recognition (MLR) algorithms heavily depend on large-scale datasets with complete labels, making collecting large-scale datasets extremely time-consuming and labor-intensive. Training the multi-label image recognition models with partial labels (MLR-PL) is an alternative way, in which merely some labels are known while others are unknown for each image. However, current MLP-PL algorithms rely on pre-trained image similarity models or iteratively updating the image classification models to generate pseudo labels for the unknown labels. Thus, they depend on a certain amount of annotations and inevitably suffer from obvious performance drops, especially when the known label proportion is low. To address this dilemma, we propose a dual-perspective semantic-aware representation blending (DSRB) that blends multi-granularity category-specific semantic representation across different images, from instance and prototype perspective respectively, to transfer information of known labels to complement unknown labels. Specifically, an instance-perspective representation blending (IPRB) module is designed to blend the representations of the known labels in an image with the representations of the corresponding unknown labels in another image to complement these unknown labels. Meanwhile, a prototype-perspective representation blending (PPRB) module is introduced to learn more stable representation prototypes for each category and blends the representation of unknown labels with the prototypes of corresponding labels, in a location-sensitive manner, to complement these unknown labels. Extensive experiments on the MS-COCO, Visual Genome, and Pascal VOC 2007 datasets show that the proposed DSRB consistently outperforms current state-of-the-art algorithms on all known label proportion settings.Comment: Technical Report. arXiv admin note: text overlap with arXiv:2203.0217
    corecore