18 research outputs found

    The Effects of Music Therapy-Singing Group on Quality of Life and Affect of Persons With Dementia: A Randomized Controlled Trial

    Get PDF
    Dementia is a clinical syndrome that is progressive and degenerative, affecting memory, behavior, emotion, and personality. Persons with dementia often experience deterioration of cognitive ability, as well as various behavioral and psychological disturbances, which significantly contribute to reduced quality of life and emotional well-being. The demand for long-term care continues to rise rapidly and it is therefore critical to develop effective strategies and evidence-based interventions to improve the quality of life for persons with dementia. Music therapy has drawn attention as a promising non-pharmacological approach for persons with dementia. A variety of music interventions including singing and listening to music have been widely applied for dementia care not only by music therapists, but also by other healthcare professionals. There are, however, little research studies that compare possible effects of music therapy interventions with those of music-based approaches on dementia care. The purpose of the current study was to compare the short-term effects of a music therapy-singing group with those of a music medicine-listening group and a control-TV group, on quality of life and affect of persons with dementia at a long-term care facility. The music therapy-singing group was facilitated by a music therapist, whereas the music medicine-listening and the control-TV group were led by nursing home activity staff. Fifty-two participants, whose ages range from 67 to 99 years old, were randomly assigned to one of the three groups, and 37 participants completed the interventions. The participants in each group were engaged for a 40-min session twice a week for four consecutive weeks. Quality of life was measured at the baseline and after the last session and only the music therapy-singing group demonstrated significant improvements when compared to the other groups. Positive and negative affect were measured at three points, including pre and post the first, fourth and eighth sessions. Only the music therapy-singing group significantly increased positive affect scores and decreased negative affect scores. The findings of the current study suggest that music therapy with active group singing may be an effective non-pharmacological intervention in improving quality of life and affect of persons with dementia at long-term care settings.Clinical Trial Registration: http://www.germanctr.de/drks_web/, registration number DRKS00014934

    P-TEFb Regulates Transcriptional Activation in Non-coding RNA Genes

    Get PDF
    Many non-coding RNAs (ncRNAs) serve as regulatory molecules in various physiological pathways, including gene expression in mammalian cells. Distinct from protein-coding RNA expression, ncRNA expression is regulated solely by transcription and RNA processing/stability. It is thus important to understand transcriptional regulation in ncRNA genes but is yet to be known completely. Previously, we identified that a subset of mammalian ncRNA genes is transcriptionally regulated by RNA polymerase II (Pol II) promoter-proximal pausing and in a tissue-specific manner. In this study, human ncRNA genes that are expressed in the early G1 phase, termed immediate early ncRNA genes, were monitored to assess the function of positive transcription elongation factor b (P-TEFb), a master Pol II pausing regulator for protein-coding genes, in ncRNA transcription. Our findings indicate that the expression of many ncRNA genes is induced in the G0–G1 transition and regulated by P-TEFb. Interestingly, a biphasic characteristic of P-TEFb-dependent transcription of serum responsive ncRNA genes was observed: Pol II carboxyl-terminal domain phosphorylated at serine 2 (S2) was largely increased in the transcription start site (TSS, -300 to +300) whereas overall, it was decreased in the gene body (GB, > +350) upon chemical inhibition of P-TEFb. In addition, the three representative, immediate early ncRNAs, whose expression is dependent on P-TEFb, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), nuclear enriched abundant transcript 1 (NEAT1), and X-inactive specific transcript (XIST), were further analyzed for determining P-TEFb association. Taken together, our data suggest that transcriptional activation of many human ncRNAs utilizes the pausing and releasing of Pol II, and that the regulatory mechanism of transcriptional elongation in these genes requires the function of P-TEFb. Furthermore, we propose that ncRNA and mRNA transcription are regulated by similar mechanisms while P-TEFb inhibition unexpectedly increases S2 Pol II phosphorylation in the TSSs in many ncRNA genes.One Sentence Summary: P-TEFb regulates Pol II phosphorylation for transcriptional activation in many stimulus-inducible ncRNA genes

    Development of Middle East Respiratory Syndrome Coronavirus vaccines – advances and challenges

    No full text
    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging pathogen with the potential to pose a threat to global public health. Sporadic cases and outbreaks continue to be reported in the Middle East, and case fatality rates remain high at approximately 36% globally. No specific preventive or therapeutic countermeasures currently exist. A safe and effective vaccine could play an important role in protecting against the threat from MERS-CoV. This review discusses human vaccine candidates currently under development, and explores viral characteristics, molecular epidemiology and immunology relevant to MERS-CoV vaccine development. At present, a DNA vaccine candidate has begun a human clinical trial, while two vector-based candidates will very soon begin human trials. Protein-based vaccines are still at pre-clinical stage. Challenges to successful development include incomplete understanding of viral transmission, pathogenesis and immune response (in particular at the mucosal level), no optimal animal challenge models, lack of standardized immunological assays, and insufficient sustainable funding

    Independent and supra-additive effects of alcohol consumption, cigarette smoking, and metabolic syndrome on the elevation of serum liver enzyme levels.

    Get PDF
    We investigated the independent and combined effects of alcohol consumption, cigarette smoking and metabolic syndrome on abnormal liver function, i.e., the elevation of serum liver enzyme levels. Participants of a Korean population-based prospective cohort aged ≥30 years without liver disease, diabetes, or cardiovascular diseases were included. Information on alcohol consumption, smoking status, and metabolic syndrome, defined as per the criteria of the Adult Treatment Panel III, were applied to evaluate their impact on serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Alcohol consumption, cigarette smoking and metabolic syndrome were the significant individual factors that elevated serum liver enzyme levels. Supra-additive effects of metabolic syndrome and either alcohol consumption or cigarette smoking were also identified. The combination of heavy drinking (≥24 g/day) and metabolic syndrome conferred an effect that was higher than the sum of the two individual effects (Synergic Index (SI): AST, 2.37 [1.20-4.67]; GGT, 1.91 [1.17-3.13]). Only GGT level (odds ratio 6.04 [3.68-9.94], SI 2.33 [1.24-4.41]) was significantly elevated when the effect of moderate drinking (<24 g/day) and metabolic syndrome was combined. The combined effect of any level of alcohol consumption and cigarette smoking was also supra-additive on the elevation of GGT level with SIs of 5.57 for drinking <24 g/day and smoking ≤20 pack years, 5.12 for <24 g/day and >20 pack years, 1.80 for ≥24 g/day and ≤20 pack years, 2.03 for ≥24 g/day and >20 pack years, while only the combined effect of drinking ≥24 g/day and smoking >20 pack years elevated the AST level (SI 4.55 [3.12-6.61]). The combined effect of cigarette smoking and metabolic syndrome was not supra-additive. To prevent fatty liver disease and other related diseases, a multifactorial prevention strategy that includes limited alcohol consumption, smoking cessation and rectification of adverse metabolic profiles is required

    Lactiplantibacillus plantarum K8 lysates regulate hypoxia-induced gene expression

    No full text
    Abstract Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation

    BRCA1-BARD1 regulates transcription through modulating topoisomerase IIβ

    No full text
    RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression

    New structural insight of C-terminal region of Syntenin-1, enhancing the molecular dimerization and inhibitory function related on Syndecan-4 signaling

    No full text
    The PDZ domain-containing scaffold protein, syntenin-1, binds to the transmembrane proteoglycan, syndecan-4, but the molecular mechanism/function of this interaction are unknown. Crystal structure analysis of syntenin-1/syndecan-4 cytoplasmic domains revealed that syntenin-1 forms a symmetrical pair of dimers anchored by a syndecan-4 dimer. The syndecan-4 cytoplasmic domain is a compact intertwined dimer with a symmetrical clamp shape and two antiparallel strands forming a cavity within the dimeric twist. The PDZ2 domain of syntenin-1 forms a direct antiparallel interaction with the syndecan-4 cytoplasmic domain, inhibiting the functions of syndecan-4 such as focal adhesion formation. Moreover, C-terminal region of syntenin-1 reveals an essential role for enhancing the molecular homodimerization. Mutation of key syntenin-1 residues involved in the syndecan-4 interaction or homodimer formation abolishes the inhibitory function of syntenin-1, as does deletion of the homodimerization-related syntenin-1 C-terminal domain. Syntenin-1, but not dimer-formation-incompetent mutants, rescued the syndecan-4-mediated inhibition of migration and pulmonary metastasis by B16F10 cells. Therefore, we conclude that syntenin-1 negatively regulates syndecan-4 function via oligomerization and/or syndecan-4 interaction, impacting cytoskeletal organization and cell migration

    Distribution of each component of metabolic syndrome and serum liver enzyme level by gender.

    No full text
    a<p>Mantel-Haenszel chisquare test.</p>b<p>Chisquare test.</p>c<p>Normal: systolic <130 mmHg and diastolic <85 mmHg; abnormal: systolic ≥130 mmHg or diastolic ≥85 mmHg.</p><p>AST: aspartate aminotransferase, ALT: alanine aminotransferase, BMI: body mass index, FBS: fasting blood glucose, GGT: gamma-glutamyl transferase, HDL: high-density lipoprotein, KRW: Korean Won.</p
    corecore