805 research outputs found

    Heavy-Quark Probes of the Quark-Gluon Plasma at RHIC

    Get PDF
    Thermalization and collective flow of charm (c) and bottom (b) quarks in ultra-relativistic heavy-ion collisions are evaluated based on elastic parton rescattering in an expanding quark-gluon plasma (QGP). We show that resonant interactions in a strongly interacting QGP (sQGP), as well as the effects of parton coalescence, can play an essential role in the interpretation of recent data from the Relativistic Heavy-Ion Collider (RHIC), and thus illuminate the nature of the sQGP and its hadronization. Our main assumption, motivated by recent findings in lattice computations of Quantum Chromodynamics, is the existence of D- and B-meson states in the sQGP, providing resonant cross sections for heavy quarks up to temperatures of sim 2 T_c. Pertinent drag and diffusion coefficients are implemented into a relativistic Langevin simulation to compute transverse-momentum spectra and azimuthal asymmetries (v_2) of b- and c-quarks in Au-Au collisions at RHIC. Hadronization into D- and B-mesons is calculated from a combination of coalescence with light quarks and fragmentation, and associated electron-decay spectra and v_2 are compared to recent RHIC data. We also comment on the relative importance of radiative and elastic energy loss of heavy quarks in the QGP.Comment: 4 pages, 3 figures, v2: 1 reference updated, v3: replaced comparison to data to more recent data, references added, contents unchange

    Soft Modes, Resonances and Quantum Transport

    Get PDF
    Effects of the propagation of particles, which have a finite life-time and an according width in their mass spectrum, are discussed in the context of transport description. First, the importance of coherence effects (Landau-Pomeranchuk-Migdal effect) on production and absorption of field quanta in non-equilibrium dense matter is considered. It is shown that classical diffusion and Langevin results correspond to re-summation of certain field-theory diagrams formulated in terms of full non-equilibrium Green's functions. Then the general properties of broad resonances in dense and hot systems are discussed in the framework of a self-consistent and conserving Phi-derivable method of Baym at the examples of the rho-meson in hadronic matter and the pion in dilute nuclear matter. Further we address the problem of a transport description that properly accounts for the damping width of the particles. The Phi-derivable method generalized to the real-time contour provides a self-consistent and conserving kinetic scheme. We derive a generalized expression for the non-equilibrium kinetic entropy flow, which includes corrections from fluctuations and mass-width effects. In special cases an H-theorem is proved. Memory effects in collision terms give contributions to the kinetic entropy flow that in the Fermi-liquid case recover the famous bosonic type T^3 ln T correction to the specific heat of liquid Helium-3. At the example of the pion-condensate phase transition in dense nuclear matter we demonstrate important part played by the width effects within the quantum transport.Comment: submitted to Phys. At. Nucl. (Rus.), the volume dedicated to the memory of A.B. Migdal. 31 pages, 5 figure

    Soft Modes, Quantum Transport and Kinetic Entropy

    Full text link
    The effects of the propagation of particles which have a finite life-time and an according width in their mass spectrum are discussed in the context of transport descriptions. In the first part the coupling of soft photon modes to a source of charged particles is studied in a classical model which can be solved completely in analytical terms. The solution corresponds to a re-summation of certain field theory diagrams. The general properties of broad resonances in dense finite temperature systems are discussed at the example of the ρ\rho-meson in hadronic matter. The second part addresses the problem of transport descriptions which also account for the damping width of the particles. The Kadanoff--Baym equation after gradient approximation together with the Φ\Phi-derivable method of Baym provides a self-consistent and conserving scheme. Memory effects appearing in collision term diagrams of higher order are discussed. We derive a generalized expression for the nonequilibrium kinetic entropy flow, which includes corrections from fluctuations and mass-width effects. In special cases an HH-theorem is proved. Memory effects in collision terms provide contributions to the kinetic entropy flow that in the Fermi-liquid case recover the famous bosonic type T3lnTT^3 \ln T correction to the specific heat of liquid Helium-3.Comment: Contribution to Proc. of Int. Workshop "Kadanoff-Baym Equations - Progress and Perspectives for Many-Body Physics" Rostock (Germany), September 20-24 1999, ed. M.Bonitz, World Scientific (2000

    Bottomonium Production at RHIC and LHC

    Full text link
    Properties of bottomonia (Upsilon, chi_b and Upsilon') in the Quark-Gluon Plasma (QGP) are investigated by assessing inelastic reaction rates and their interplay with open-bottom states (b-quarks or B-mesons) and color-screening. The latter leads to vanishing quarkonium binding energies at sufficiently high temperatures (close to the dissolution point), which, in particular, renders standard gluo-dissociation, g+Upsilon -> b + b-bar, inefficient due to a substantial reduction in final-state phase space. This problem is overcome by invoking a "quasifree" destruction mechanism, g,q,q-bar + Upsilon -> g,q,q-bar + b + b-bar, as previously introduced for charmonia. The pertinent reaction rates are implemented into a kinetic theory framework to evaluate the time evolution of bottomonia in heavy-ion reactions at RHIC and LHC within an expanding fireball model. While bottom quarks are assumed to be exclusively produced in primordial nucleon-nucleon collisions, their thermal relaxation times in the QGP, which importantly figure into Upsilon-formation rates, are estimated according to a recent Fokker-Planck treatment. Predictions for the centrality dependence of Upsilon production are given for upcoming experiments at RHIC and LHC. At both energies, Upsilon suppression turns out to be the prevalent effect.Comment: 16 Pages, 21 figures, 1 table v2: Manuscript reorganized, several sections moved to appendices, additional comments included, contents unchange

    Theory and Phenomenology of Heavy Flavor at RHIC

    Full text link
    We review the problem of heavy-quark diffusion in the Quark-Gluon Plasma and its ramifications for heavy-quark spectra in heavy-ion collisions at RHIC. In particular, we attempt to reconcile underlying mechanisms of several seemingly different approaches that have been put forward to explain the large suppression and elliptic flow of non-photonic electron spectra. We also emphasize the importance of a quantitative description of the bulk medium evolution to extract reliable values for the heavy-quark diffusion coefficient.Comment: 8 pages latex, including 10 eps figures; plenary talk at SQM08, Beijing (China), Oct. 06-10, 200
    corecore