892 research outputs found

    All-optical switching of magnetic domains in Co/Gd heterostructures with Dzyaloshinskii-Moriya Interaction

    Get PDF
    Given the development of hybrid spintronic-photonic devices and chiral magnetic structures, a combined interest in all-optical switching (AOS) of magnetization and current-induced domain wall motion in synthetic ferrimagnetic structures with strong Dzyaloshinskii-Moriya Interaction (DMI) is emerging. In this study, we report a study on single-pulse all-optical toggle switching and asymmetric bubble expansion in specially engineered Co/Gd-based multilayer structures. In the absence of any external magnetic fields, we look into the AOS properties and the potential role of the DMI on the AOS process as well as the stability of optically written micro-magnetic domains. Particularly, interesting dynamics are observed in moon-shaped structures written by two successive laser pulses. The stability of domains resulting from an interplay of the dipolar interaction and domain-wall energy are compared to simple analytical models and micromagnetic simulations

    Bottomonium Production at RHIC and LHC

    Full text link
    Properties of bottomonia (Upsilon, chi_b and Upsilon') in the Quark-Gluon Plasma (QGP) are investigated by assessing inelastic reaction rates and their interplay with open-bottom states (b-quarks or B-mesons) and color-screening. The latter leads to vanishing quarkonium binding energies at sufficiently high temperatures (close to the dissolution point), which, in particular, renders standard gluo-dissociation, g+Upsilon -> b + b-bar, inefficient due to a substantial reduction in final-state phase space. This problem is overcome by invoking a "quasifree" destruction mechanism, g,q,q-bar + Upsilon -> g,q,q-bar + b + b-bar, as previously introduced for charmonia. The pertinent reaction rates are implemented into a kinetic theory framework to evaluate the time evolution of bottomonia in heavy-ion reactions at RHIC and LHC within an expanding fireball model. While bottom quarks are assumed to be exclusively produced in primordial nucleon-nucleon collisions, their thermal relaxation times in the QGP, which importantly figure into Upsilon-formation rates, are estimated according to a recent Fokker-Planck treatment. Predictions for the centrality dependence of Upsilon production are given for upcoming experiments at RHIC and LHC. At both energies, Upsilon suppression turns out to be the prevalent effect.Comment: 16 Pages, 21 figures, 1 table v2: Manuscript reorganized, several sections moved to appendices, additional comments included, contents unchange

    Renormalization of Self-consistent Approximation schemes Finite Temperature II: Applications to the Sunset Diagram

    Full text link
    The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the ϕ4\phi^4-theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ\Phi-derivable approximation or 2PI effective action concept.Comment: 18 pages, 7 figures Changes in version 2: Adapted title to the first paper of the series, added one figure and some references. This version was submitted to Phys. Rev. D; Changes in version 3: added one more reference Changes in version 4 (accepted for publication by Phys. Rev. D): Added a paragraph about the massless case and some remarks in the introductio

    Chiral symmetry restoration in linear sigma models with different numbers of quark flavors

    Full text link
    Chiral symmetry restoration at nonzero temperature is studied in the framework of the O(4) linear sigma model and the U(N_f)_r x U(N_f)_l linear sigma model with N_f=2,3, and 4 quark flavors. We investigate the temperature dependence of the masses of the scalar and pseudoscalar mesons, and the non-strange, strange, and charm condensates within the Hartree approximation as derived from the Cornwall-Jackiw-Tomboulis formalism. We find that the masses of the non-strange and strange mesons at nonzero temperature depend sensitively on the particular symmetry of the model and the number of light quark flavors N_f. On the other hand, due to the large charm quark mass, neither do charmed mesons significantly affect the properties of the other mesons, nor do their masses change appreciably in the temperature range around the chiral symmetry restoration temperature. In the chiral limit, the transition temperatures for chiral symmetry restoration are surprisingly close to those found in lattice QCD.Comment: 28 pages, 8 figure

    Exploring THz exchange resonances in synthetic ferrimagnets with ultrashort optically induced spin currents

    Get PDF
    Using spin currents generated by fs laser pulses, we demonstrate excitation of GHz ferromagnetic resonance and THz ferrimagnetic exchange resonances in Co/Gd/Co/Gd multilayers by time-resolved magneto-optic Kerr effect measurements. Varying the Gd layer thickness allows for a tuning of the resonance spectrum by manipulating the total angular momentum and strength of effective exchange fields between the antiferromagnetically coupled layers. Close to the compensation point of angular momentum, a minimum in the frequency of the exchange-dominated mode and a maximum in the frequency of the ferromagnetic resonance mode is observed. Finally, to gain better understanding of the excitation mechanism, we analyze the anomalous variation in the measured exchange mode amplitude as a function of its frequency. A peak in this amplitude in the vicinity of the compensation point of angular momentum is explained using a macrospin model, taking nonlinear effects at finite precession amplitudes into account

    Towards high all-optical data writing rates in synthetic ferrimagnets

    Get PDF
    Although all-optical magnetization switching with fs laser pulses has garnered much technological interest, the ultimate data rates achievable have scarcely been investigated. Recently it has been shown that after a switching event in a GdCo alloy, a second laser pulse arriving 7 ps later can consistently switch the magnetization. However, it is as of yet unknown whether the same holds in layered ferrimagnetic systems, which hold much promise for applications. In this work we investigate the minimum time delay required between two subsequent switching events in synthetic ferrimagnetic Co/Gd bilayers using two fs laser pulses. We experimentally demonstrate that the minimum time delay needed for consistent switching can be as low as 10 ps. Moreover, we demonstrate the importance of engineering heat diffusion away from the magnetic material, as well as control over the laser pulse power. This behavior is reproduced using modelling, where we find that the second switch can occur even when the magnetization is not fully recovered. We further confirm that heat diffusion is a critical factor in reducing the time delay for the second switch, while also confirming a critical dependence on laser power

    Nonequilibrium evolution of Phi**4 theory in 1+1 dimensions in the 2PPI formalism

    Get PDF
    We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for a Phi**4 model in 1+1 dimensions with a symmetric and a double well potential. We use the 2PPI formalism and go beyond the Hartree approximation by including the sunset term. In addition to the mean field phi= the 2PPI formalism uses as variational parameter a time dependent mass M**2(t) which contains all local insertions into the Green function. We compare our results to those obtained in the Hartree approximation. In the symmetric Phi**4 theory we observe that the mean field shows a stronger dissipation than the one found in the Hartree approximation. The dissipation is roughly exponential in an intermediate time region. In the theory with spontaneous symmetry breaking, i.e., with a double well potential, the field amplitude tends to zero, i.e., to the symmetric configuration. This is expected on general grounds: in 1+1 dimensional quantum field theory there is no spontaneous symmetry breaking for T >0, and so there should be none at finite energy density (microcanonical ensemble), either. Within the time range of our simulations the momentum spectra do not thermalize and display parametric resonance bands.Comment: 14 pages, 18 encapsulated postscript figures; v2 minor changes, new appendix, accepted for publication in Phys.Rev.

    Deterministic all-optical magnetization writing facilitated by non-local transfer of spin angular momentum

    Full text link
    Ever since the discovery of all-optical magnetization switching (AOS) around a decade ago, this phenomenon of manipulating magnetization using only femtosecond laser pulses has promised a large potential for future data storage and logic devices. Two distinct mechanisms have been observed, where the final magnetization state is either defined by the helicity of many incoming laser pulses, or toggled by a single pulse. What has thus far been elusive, yet essential for applications, is the deterministic writing of a specific magnetization state with a single laser pulse. In this work we experimentally demonstrate such a mechanism by making use of a spin polarized current which is optically generated in a ferromagnetic reference layer, assisting or hindering switching in an adjacent Co/Gd bilayer. We show deterministic writing of an 'up' and 'down' state using a sequence of 1 or 2 pulses, respectively. Moreover, we demonstrate the non-local origin of the effect by varying the magnitude of the generated spin current. Our demonstration of deterministic magnetization writing could provide an essential step towards the implementation of future optically addressable spintronic memory devices

    Theory and Phenomenology of Vector Mesons in Medium

    Get PDF
    Electromagnetic probes promise to be direct messengers of (spectral properties of) hot and dense matter formed in heavy-ion collisions, even at soft momentum transfers essential for characterizing possible phase transitions. We examine how far we have progressed toward this goal by highlighting recent developments, and trying to establish connections between lattice QCD, effective hadronic models and phenomenology of dilepton production.Comment: 8 pages latex incl. 12 ps/eps files; invited plenary talk at Quark Matter 2006 conference, Shanghai (China), Nov. 14-20, 200
    • …
    corecore