40 research outputs found

    Paraventricular nucleus of the human hypothalamus in primary hypertension: activation of corticotropin-releasing hormone neurons

    No full text
    By using quantitative immunohistochemical and in situ hybridization techniques, we studied corticotropin-releasing hormone (CRH)-producing neurons of the hypothalamic paraventricular nucleus (PVN) in patients who suffered from primary hypertension and died due to acute cardiac failure. The control group consisted of individuals who had normal blood pressure and died of acute heart failure due to mechanical trauma. Both magno- and parvocellular populations of CRH neurons appeared to be more numerous in the PVN of hypertensive patients. Quantitative analysis showed approximately a twofold increase in the total number of CRH neurons and a more than fivefold increase in the amount of CRH mRNA in the hypertensive PVN compared with the control. It is suggested that synthesis of CRH in hypertensive PVN is enhanced. Increased activity of CRH-producing neurons in the PVN of hypertensive patients is proposed not only to entail hyperactivity of the hypothalamo-pituitary-adrenal axis, but also of the sympathetic nervous system and, thus, to be involved in the pathogenesis of hypertension. (C) 2002 Wiley-Liss, In

    Restricted daytime feeding modifies suprachiasmatic nucleus vasopressin release in rats

    No full text
    The authors have shown previously that vasopressin (VP) release from suprachiasmatic nucleus (SCN) efferents in rats is important for the timing of the circadian activity of the hypothalamo-pituitary-adrenal (HPA) axis, resulting in a circadian rise in corticosterone at dusk. When meals are supplied at a fixed time during the light period, however, this normal circadian activity of the HPA axis is strongly modified. Under such a restricted feeding regimen, a corticosterone peak appears just before the daily meal in addition to the circadian corticosterone peak at dusk. This feeding-associated rise in corticosterone is regarded as an SCN-independent circadian rhythm because it is sustained in SCN-lesioned animals. Despite these previous results, the authors investigated a putative involvement of SCN-derived VP in the control of the prefeeding corticosterone peak by measuring the intranuclear release of VP in the SCN and plasma corticosterone levels in rats in ad libitum feeding conditions as well as in animals that were obliged to feed during a 2-h period in the middle of the light period. Restricted daytime feeding caused clear changes in the daily release pattern of VP from SCN terminals. Both a delayed onset of the diurnal rise and a premature decline of the elevated daytime levels were observed, but the acrophase of the VP rhythm was not phase shifted. Concerning the circadian corticosterone peak, no phase shift of its acrophase was observed either. It is concluded that (1) restricted daytime feeding does affect SCN activity, (2) intranuclear release of VP within the SCN is an important mechanism to amplify and synchronize the circadian rhythms as dictated by the light/dark-entrained circadian pacemaker, and (3) VP release observed in animals on restricted feeding is completely compatible with the previously proposed inhibitory action of SCN-derived VP on the HPA axi

    Simultaneous detection of tyrosine hydroxylase-immunoreactivity and vasopressin mRNA in neurons of the human paraventricular and supraoptic nucleus

    No full text
    Our purpose was to investigate the proportion of tyrosine hydroxylase (TH)-immunoreactive (IR) neurons expressing vasopressin (VP) mRNA in the human paraventricular and supraoptic nuclei by combining in situ hybridization with immunohistochemistry on the same tissue section. A variability in the proportion of TH-IR neurons synthesizing VP mRNA was observed in adults which was usually more than 50%. In neonates almost all the TH-IR neurons appeared to contain VP mRNA. (C) 2000 Elsevier Science B.V

    Novel environment induced inhibition of corticosterone secretion: physiological evidence for a suprachiasmatic nucleus mediated neuronal hypothalamo-adrenal cortex pathway

    No full text
    Basal plasma ACTH and corticosterone levels are controlled by the suprachiasmatic nucleus (SCN), the site of the circadian pacemaker, resulting in a daily peak in plasma corticosterone and ACTH. The present study was carried out to investigate the mechanisms employed by the biological clock to control these hormones. Novel environment induced changes in plasma ACTH and corticosterone in intact and SCN-lesioned animals were employed as experimental approach. Placing intact animals in a new environment results in different plasma corticosterone and ACTH responses depending on the clock time of the stimulus. (1) Novel environment (2 h after onset of darkness (ZT14)) results in a fast decrease followed by an increase in corticosterone. This changing pattern in corticosterone secretion was not accompanied by any change in plasma ACTH, suggesting a direct neuronal control of the adrenal cortex. (2) In contrast, novel environment at 2 h after light onset (ZT2) results in a rapid increase in plasma ACTH. Regression analysis of the relation ACTH-corticosterone before and after stress shows a changed pattern at ZT2, although at that time still no significant correlation between ACTH and corticosterone was detected. AT ZT14 this correlation was only present after stress. (3) SCN lesioning results in low basal ACTH at all circadian times combined with elevated corticosterone levels. Here, a new environment results in an immediate increase in corticosterone without inhibition; ACTH also increases rapidly, but attains lower levels than at ZT2 in intact animals. (4) The present results therefore demonstrate SCN modulating corticosterone secretion by affecting ACTH secretion and changing the sensitivity of the adrenal cortex by means of a neuronal inpu

    A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist

    No full text
    The mammalian suprachiasmatic nuclei (SCN) contain an endogenous pacemaker that generates daily rhythms in behavior and secretion of hormones. We hypothesized that the SCN imposes its circadian rhythm on the rest of the brain via a rhythmic release of its transmitters in its target areas. Previously, we demonstrated a pronounced inhibitory effect of vasopressin (VP), released from SCN terminals in the dorsomedial hypothalamus, on the release of the adrenal hormone corticosterone. In the present study, microdialysis-mediated intracerebral administration of the VP V1-receptor antagonist was used to pursue the study of the mechanisms underlying the circadian control of basal corticosterone release. Using timed administrations of the VP antagonist divided equally over the day/night cycle, we were able to uncover the existence of an additional stimulatory input from the SCN to the hypothalamopituitary-adrenal (HPA) axis. Peak activity of this stimulatory SCN input takes place during the second half of the light period, after the daily peak of VP secretion, with a delay of approximately 4-6 hr. In all likelihood, the inhibitory and stimulatory circadian input via separate mechanisms affects corticosterone release. Together, these two opposing circadian control mechanisms of the HPA axis enable a precise timing of the circadian peak in corticosterone releas
    corecore