19 research outputs found

    Optimality in superselective surface binding by multivalent DNA nanostars

    Full text link
    Weak multivalent interactions govern a large variety of biological processes like cell-cell adhesion and virus-host interactions. These systems distinguish sharply between surfaces based on receptor density, known as superselectivity. Earlier experimental and theoretical work provided insights into the control of selectivity: Weak interactions and a high number of ligands facilitate superselectivity. Present experimental studies typically involve tens or hundreds of interactions, resulting in a high entropic contribution leading to high selectivities. However, if, and if so how, systems with few ligands, such as multi-domain proteins and virus binding to a membrane, show superselective behavior is an open question. Here, we address this question with a multivalent experimental model system based on star shaped branched DNA nanostructures (DNA nanostars) with each branch featuring a single stranded overhang that binds to complementary receptors on a target surface. Each DNA nanostar possesses a fluorophore, to directly visualize DNA nanostar surface adsorption by total internal reflection fluorescence microscopy (TIRFM). We observe that DNA nanostars can bind superselectively to surfaces and bind optimally at a valency of three. We quantitatively explain this optimum by extending the current theory with interactions between DNA nanostar binding sites (ligands). Our results add to the understanding of multivalent interactions, by identifying microscopic mechanisms that lead to optimal selectivity, and providing quantitative values for the relevant parameters. These findings inspire additional design rules which improve future work on selective targeting in directed drug delivery.Comment: 14 pages, 4 figure

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice—Brief Report

    No full text
    Objective-It is known that both platelets and coagulation strongly influence infarct progression after ischemic stroke, but the mechanisms and their interplay are unknown. Our aim was to assess the contribution of the procoagulant platelet surface, and thus platelet-driven thrombin generation, to the progression of thromboinflammation in the ischemic brain. Approach and Results-We present the characterization of a novel platelet and megakaryocyte-specific TMEM16F (anoctamin 6) knockout mouse. Reflecting Scott syndrome, platelets from the knockout mouse had a significant reduction in procoagulant characteristics that altered thrombin and fibrin generation kinetics. In addition, knockout mice showed significant defects in hemostasis and arterial thrombus formation. However, infarct volumes in a model of ischemic stroke were comparable with wild-type mice. Conclusions-Platelet TMEM16F activity contributes significantly to hemostasis and thrombosis but not cerebral thromboinflammation. These results highlight another key difference between the roles of platelets and coagulation in these processes
    corecore